UDC 550.41 : 549.521 : 544.774.4 : 537.8


Yu.L. Zabulonov, DrSc (Tech.), Corresp. Member of the NAS of Ukraine, Prof., Director

E-mail: Zabulonov@igns.gov.ua https://orcid.org/0000-0001-8239-8654

V.M. Kadoshnikov, Research Scientist

34-a, Acad. Palladin Ave., Kyiv, Ukraine, 03142

E-mail: IGNS_Kadoshnikov@igns.gov.ua https://orcid.org/0000-0001-8707-873X

T.I. Melnychenko, PhD (Biology), Senior Research Scientist

E-mail: tim--@ukr.net https://orcid.org/0000-0003-2349-5395

H.P. Zadvernyuk, PhD (Geology), Senior Research Scientist

E-mail: zadvernyuk@ukr.net https://orcid.org/0000-0001-6425-9845

S.V. Kuzenko, Research Scientist

E-mail: IGNS_Kuzenko@nas.gov.ua https://orcid.org/0000-0003-2641-6699

Yu.V. Lytvynenko, PhD (Tech.), Scientific Secretary

State Institution "The Institute of Environmental Geochemistry of National Academy of Sciences of Ukraine"

34-a, Acad. Palladin Ave., Kyiv, Ukraine, 03142

E-mail: Lytvynenko@igns.gov.ua https://orcid.org/0000-0003-1659-9831

Language: English

Mineralogical journal 2021, 43 (2): 74-79

Abstract: The change of geochemical properties of ferric hydroxide nanoparticles under the influence of a weak magnetic field was investigated. Ferric hydroxide nanoparticles formed as a result of the interaction of iron-containing minerals with natural aqueous solutions are of importance for geochemical processes, especially hypergenesis, sedimentation, and soil formation. The hydrolysis of ferric chloride in hot water (t = 70-75°С) was used to obtain ferric hydroxide nanoparticles under laboratory conditions. The nanodispersion (colloidal solution) was exposed to a weak pulsed magnetic field. The spectrophotometric properties of the colloidal solution of ferric hydroxide were determined using an SF-46 spectrophotometer in the wavelength range of 320-610 nm. The size of colloidal particles was calculated by a method based on the theory of Rayleigh light scattering. The size of colloidal particles depended on the exposure duration of a pulsed magnetic field on the colloidal solution. The size of colloidal particles was due to a change in the magnitude of the diffuse ionic atmosphere under the influence of a pulsed magnetic field. The kinetic stability of the colloidal solution was evaluated by the coagulation threshold, which was determined visually by the appearance of the turbidity of ferric hydroxide colloid when adding NaCl solution. The kinetic stability of a colloidal system was determined by the size of colloidal particles. These results can be used to better understand certain hypergenesis, sedimentation, and soil formation processes.

Keywords: ferric hydroxide nanoparticles, magnetic field, kinetic stability, colloidal particle size.


  1. Arteaga-Cardona, F., Martha-Aguilar, N.G., Estevez, J.O., Pal, U., Méndez-Rojas, M.A. and Salazar-Kuri, U. (2019), SN Appl., Sci., 1, Art. 412. https://doi.org/10.1007/s42452-019-0447-y
  2. Chibowski, E., Hołysz, L. and Wójcik, W. (1994), Colloid Surf. A, Vol. 92, Iss. 1-2, pp. 79-85. https://doi.org/10.1016/0927-7757(94)02949-0
  3. Gorlenko, N.P., Safronov, V.N., Abzaev, Yu.A., Sarkisov, Yu.S., Kugaevskaya, S.N. and Ermilova, T.A. (2015), Vestnik TSUAB, Vol. 50 (3), Tomsk, RU, pp. 134-150 [in Russian].
  4. Gu, Y., Li, S., Xu, Y., Han, J., Gu, M., Cai, Z., Iv, Y., Xie, G., Ma, T. and Luo, J. (2019), Colloid Surf. A, Vol. 582, Art. 123822. https://doi.org/10.1016/j.colsurfa.2019.123822
  5. Higashitani, K., Okuhara, K. and Hatade, S. (1992), J. Colloid Interface Sci., Vol. 152, pp. 125-131. https://doi.org/10.1016/0021-9797(92)90013-C
  6. Housni, S., Abramson, S., Guigner, J., Levitz, P. and Michot, L. (2020), Nano Res., Vol. 13, pp. 3001-3011. https://doi.org/10.1007/s12274-020-2964-9
  7. Kadoshnikov, V.M., Zabulonov, Yu.L., Litvinenko, Yu.V., Makarov, A.S. and Savitsky, D.P. (2010), Mineral. Journ. (Ukraine), Vol. 32, No. 4, Kyiv, pp. 41-50 [in Russian]. https://doi.org/10.15407/mineraljournal
  8. Kashevskii, B.E. (2003), Colloid Journ., Vol. 65, pp. 319-322. https://doi.org/10.1023/A:1024254722602
  9. Kukovskiy, Ye.G., Movchan, N.P., Ostrovskaya, A.B. et al. (1984), Strukturnye prevrashcheniya mineralov, Nauk. dumka, Kyiv, UA, 118 p. [in Russian].
  10. Landau, L., Lifshitz, E. and Pitaevski, L. (1984), Electrodynamics of Continuous Media, Pergamon, Oxford, 460 p. https://doi.org/10.1016/B978-0-08-030275-1.50007-2
  11. Medvedeva, I., Bakhteeva, Y., Zhakov, S., Revvo, A., Byzov, I., Uimin, M., Yermakov, A. and Mysik, A. (2013), J. Nanopart. Res., Vol. 15, Art. 2054. https://doi.org/10.1007/s11051-013-2054-y
  12. Samchuk, A.I., Kuraieva, I.V., Voitiuk, Yu.Yu., Matvienko, A.V. and Vovk, K.V. (2016), Mineral. Journ. (Ukraine), Vol. 38, No. 4, Kyiv, pp. 66-74 [in Ukrainian]. https://doi.org/10.15407/mineraljournal.38.04.066
  13. Savchenko, T.S. (2017), Bull. Univ. Dnipropetrovsk, Ser. geology, geography, Vol. 25 (1), Dnipro, UA, pp. 93-100 [in Ukrainian]. https://doi.org/10.15421/111711
  14. Sliapniova, L.M., Gorbunova, V.A. and Sliapniou, G.E. (2014), Science and Technique (Belarus), Vol. 6, pp. 55-59 [in Russian].
  15. Umeki, S., Kato, T., Yoshikawa, N. and Taniguchi, S. (2006), AIP Conf. Proc., Vol. 833, p. 85. https://doi.org/10.1063/1.2207081
  16. Usanov, A.D., Rebrov, V.G. and Verhov, D.G. (2013), Biomedical Radioelectronics, Vol. 2, Publ. house "Radiotekhnika", Moscow, pp. 55-58 [in Russian].
  17. Wang, Y.Y., Pugh, R.J. and Forssberg, E. (1994), Colloid Surf. A, Vol. 90, pp. 117-133. https://doi.org/10.1016/0927-7757(94)02908-3