UDC 550.4: 614.841.2 (438.42)


N.O. Kryuchenko, DrSc (Geology), Prof., Head of Department

M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine

34, Acad. Palladin Ave., Kyiv, Ukraine, 03142

E-mail: nataliya.kryuchenko@gmail.com; orcid: 0000-0001-8774-9089

E.Ya. Zhovinsky, DrSc (Geology & Mineralogy), Prof., Corresp. member of NAS of Ukraine, Chief Research Fellow.

M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine

E-mail: zhovinsky@ukr.net; orcid: 0000-0003-1601-5998

P.S. Paparуga, PhD (Geology), Senior Research Fellow, Head of the Laboratory

Carpathian Biosphere Reserve of the Ministry of Ecology and Natural Resources of Ukraine

77, Red Pleso Str., Rakhiv, Ukraine, 90600

Е-mail: paparyga.ps@ukr.net; orcid: 0000-0002-4021-0809

Language: Ukrainian

Mineralogical journal 2021, 43 (3): 91-103

Abstract: Geochemical post-pyrogenic soil changes are one of the most important factors in determining the state of the forest ecosystem. For the first time the content of microelements (Hg, As, Ba, Mg, Mn, Mo, Cd, Co, Cr, Cu, Pb, Zn, V, Ni) in post-pyrogenic sod-podzolic soils under the pine forest of Zhytomyr Polissya (Ukraine) was determined by the ICP-MS method. The study is based on a comparison of the content of trace elements in the sod-podzolic soils of the background area and burnt areas (grassland fire in 2019). The analysis of microelements in the soil profile of the burned and background areas to a depth of 10 cm (after 1 cm) and set the limit - 3-5 cm (humus-eluvial horizon), after which you can record the accumulation or scattering of elements after a fire on the surface. By calculating the percentage change (relative to background soils), intensive accumulation (more than 20%) of elements in post-pyrogenic soils - Cu, Ni, Co, V and moderate accumulation (up to 10%) - Pb, Mo, Mg, Ba, Cr and intensive scattering - Hg, As, Cd, Zn, Mn. The increase in the pH of post-pyrogenic soils (from 4.2 to 7.5) was determined, spatial map-schemes were constructed, due to which the direction of the fire was revealed - from the south-east to the north-west. The change of the content of ionic forms of metals (Cu, Pb, Zn, Mn) in the soil solution at different pH values (from 4 to 8 with a step of 0.2) is modeled (PHREEQC program) and the current trend is revealed: Pb - linear dependence, Cu, Zn, Mn is polynomial. The pH limits are calculated, where there are free forms of metals that enter the plants: Pb 3.9-8.2; Zn 5.5-7.5; Cu 5-8.2; Mn 5-11.5. The post-fire transformation of soils was revealed, which is expressed in the increase of pH (before the fire - 4.2-4.8; after the fire - 6.5-7.2; a year after the fire - 4.5-5.5). The obtained results confirmed the need for geochemical monitoring of post-pyrogenic soils for ecosystem restoration and plant biodiversity.

Keywords: grassroots fire, soils, microelements, accumulation, scattering, modeling.


  1. Krupskiy, N.K., Polupan, N.I. and Kuzmicheva, V.P. (eds) (1979), Atlas of soils of the Ukrainian SSR, Urozhay publ., Kyiv, UA, 160 p. [in Russian].
  2. Barbarich, A.I. (1955), Flora i roslynnist Polissya Ukrayinskoyi RSR. Narysy pro pryrodu i silske gospodarstvo Ukrayinskogo Polissya. Kyiv derzh. Univ. publ., Kyiv, UA, 531 p. [in Ukrainian].
  3. Bukharev, V.P. (1961), Geological map of the USSR, Scale 1 : 200 000. Central Ukrainian Series. Sheet M-35-X, Kievskiy geologorazvedochnyy trest, Kyiv, UA [in Russian].
  4. Buts, Yu.V. (2013), Bull. Odessa Nat. Univ., Ser. Geograph. and geol. sci., Vol. 18, Iss. 2, Odesa, UA, pp. 111-117 [in Ukrainian].
  5. Buts, Yu.V. (2012), Man and the environment. Problems of neoecology, No. 3-4, Kharkiv, UA, pp. 17-22 [in Ukrainian].
  6. Vedmidʹ, M.M., Raspopina, S.P. and Zborovsʹka, O.V. (2013), Sci. Bull. Nat. Univ. of Life and Environmental Sci. of Ukraine, Ser. Forestry and ornamental horticulture, Iss. 187, Ch. 3, Kyiv, UA, pp. 176-184 [in Ukrainian].
  7. Voron, V.P., Tkach, O.M. and Sidorenko, S.G. (2016), Proc. Forestry academy of sciences of Ukraine:, Iss. 14, Lviv, UA, pp. 38-44 [in Ukrainian].
  8. Glinka, N.L. (2018), General Chemistry, Vol. 1, Yurayt Publ. House, Moscow, RU, 353 p. [in Russian].
  9. Grigoryan, S.V., Kuzin, M.F. and Solovov, A.P. (1983), Instruction on geochemical methods of prospecting for ore deposits, Nedra, Moscow, RU, 191 p. [in Russian].
  10. Grishin A.M. (1997), Mathematical models of forest fires and new ways to combat them, Science publ., Novosibirsk, RU, 408 p. [in Russian].
  11. Gyninova, A.B. and Sympilova, D.P. (1999), Siberian soils, their use and protection, Novosibirsk, RU, pp. 120-124 [in Russian].
  12. (2020) Kilkist lisovih pozhezh za rik zrosla vtrichi - DSNS, Word and deed. Analytical portal, available at: https://www.slovoidilo.ua/2020/08/01/novyna/suspilstvo/kilkist-lisovyx-p... (Last accessed: 12.05.2021) [in Ukrainian].
  13. Kryuchenko, N.O., Zhovinsky, E.Ya. and Paparyga, P.S. (2019), Mineral. Journ. (Ukraine), Vol. 41, No. 4, Kyiv, UA, pp. 50-60 [in Ukrainian]. https://doi.org/10.15407/mineraljournal.41.04.050
  14. Marynych, O.M. (1993), Polissya. Geographical encyclopedia of Ukraine, DP All-Ukrainian State Specialized Form "Ukrainian Encyclopedia name of M.P. Bazhan", Vol. 3, Kyiv, UA, 480 p. [in Ukrainian].
  15. Porotov, G.S. (2006), Mathematical modeling methods in geology, Saint-Petersburg State Mining In-te, St. Petersburg, RU, 223 p. [in Russian].
  16. Rozentsvet, O.A., Fedoseeva, E.V. and Terekhova, V.A. (2019), Advances in modern biology, Vol. 139, No. 2, Moscow, RU, pp. 1-17 [in Russian]. https://doi.org/10.1134/S0042132419020078
  17. Sannikov, S.N. (1981), Ecology, No. 6, Moscow, RU, pp. 23-33 [in Russian].
  18. Sannikov, S.N. (2014), Eco-potential, No. 2 (6), Yekaterinbupg, RU, pp. 42-54 [in Russian].
  19. (2020) Melting and boiling points of pure chemical elements at atmospheric pressure Chemical portal, available at: http://www.himikatus.ru/art/melt_boil_el/melt_boil.php (Last accessed: 12.05.2021) [in Russian].
  20. Almendros, G., González-Vila, F.J., Martín, F., Fründ, R. and Lüdemann, H.-D. (1992), Science of the Total Environment, Vol. 117-118, pp. 63-74. https://doi.org/10.1016/0048-9697(92)90073-2
  21. DeBano, L.F. (2000), J. of Hydrology, Vol. 231-232, Connecticut, USA, рр. 195-206. https://doi.org/10.1016/S0022-1694(00)00194-3
  22. Giovannini, G. and Lucchesi, S. (1997), Soil Science, Vol. 162, pp. 479-486. https://doi.org/10.1097/00010694-199707000-00003
  23. Gonzalez-Perez, J.A., Gonzalez-Vila, F.J., Almendros, G. and Knicker, H. (2004), Environment Int., Vol. 30, pp. 855-870. https://doi.org/10.1016/j.envint.2004.02.003
  24. Macadam, A.M. (1987), Canad. J. of Forest Research., Vol. 17, pp. 1577-1584. https://doi.org/10.1139/x87-242
  25. Miltner, A. and Zech, W. (1997), Organic Geochem., Vol. 26, рр. 175-182. https://doi.org/10.1016/S0146-6380(97)00002-8
  26. Parkhurst, D.L. and Appelo, C.A.J. (2013), Description of Input and Examples for PHREEQC Version 3-A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport and Inverse Geochemical Calculations, Book 6, Chapter A43, US Geological Survey Techniques and Methods, Denver, 497 p. https://doi.org/10.3133/tm6A43
  27. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Martin, D., Jordàn, A. and Burguet, M. (2013), Solid Earth, No. 1, pp. 153-165. https://doi.org/10.5194/se-4-153-2013
  28. Pereira, P., Úbeda, X., Martin, D.A. (2012), Geoderma, Vol. 191, pp. 105-114. https://doi.org/10.1016/j.geoderma.2012.02.005
  29. Chandler, C., Cheney, P., Thomas, P., Trabaud, L. and Williams, D. (1983), Fire in forestry. Forest fire behavior and effects, Vol. 1, New York, John Wiley & Sons, 450 р.
  30. Tinoco, P., Almendros, G., Sanz, J., Gonzalez-Vazquez, R. and Gonzalez-Vila, F.J. (2006), Organic Geochemistry, Vol. 37 (12), pp. 1995-2018. https://doi.org/10.1016/j.orggeochem.2006.08.007
  31. Ulery, A.L., Graham, R.C. and Amrhein, C. (1993), Soil Science, Vol. 156, Philadelphia, USA, pp. 358-364. https://doi.org/10.1097/00010694-199311000-00008
  32. Woods, S.W. and Balfour, V.N. (2010), J. Hydrology, Vol. 393, pp. 274-286. https://doi.org/10.1016/j.jhydrol.2010.08.025