UDC 552.311


S.G. Kryvdik, DrSc (Geology & Mineralogy), Prof.

M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine

34, Acad. Palladin Ave., Kyiv, Ukraine, 03142

E-mail: kryvdik@ukr.net; orcid: 0000-0002-8356-1115

O.V. Dubyna, DrSc (Geology), Ass. prof.

M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine

34, Acad. Palladin Ave., Kyiv, Ukraine, 03142

Taras Shevchenko National University of Kyiv, Institute of Geology

Educational-scientific institute "Institute of Geology"

90, Vasylkivska Str., Kyiv, Ukraine, 03022

E-mail: dubyna_a@ukr.net; orcid: 0000-0002-6003-4873

P.F. Yakubenko, Chief Geologist

SE NJSC "Nadra of Ukraine" Centrukrgeologya"

13, Tatynetska Str., Cherkasy, Ukraine, 18030

E-mail: yakubenkopf@gmail.com

Language: Ukrainian

Mineralogical journal 2021, 43 (4): 25-49

Abstract: The Korsun’-Novomyrhorod pluton is the second after the Korosten one in terms of the scale of Proterozoic (1757-1748 Ma) anorthosite-rapakivi-granite magmatism in the Ukrainian Shield. According to geochronological data, pluton was formed as a result of multiple ascending and crystallization of basic to acidic melts. Differentiation of initial melts because to be responsible for gabbro-anorthosite and monzonites series crystallization. Whereas rapakivi granites, which are predominate in the modern erosion level, were formed from felsic magma not directly related with differentiation of basic melt. In view of the current level of mineralogical research, it is difficult to use modern geobarometry methods to reliably estimate the depth of rocks crystallization. At the same time, a number of factors (absence of volcanic and dike analogues of basic rocks, insignificant distribution of pegmatite bodies, predominance of high-Fe mafic minerals, absence of primary magnetite, etc.) indicate deeper conditions for rocks disclosed by modern erosional cut in comparition to similar Korosten pluton. Therefore, the liquid line of dissent, petrological and mineralogical features of the rocks can be explained by the reducing (low fO2) or abyssal conditions of their formation. It is possible that the deeper conditions of crystallization of parental melt are due to more distinctly developed syenitic trend of evolution with the appearance of high-Fe syenites during final stages. Preliminary data indicate on possibility of vertical layering of gabbro-anorthosite massifs, which manifested by increasing proportion of high-Fe basic rocks with depth. Available isotope-geochemical studies do not provide unambiguous data on regarding reservoirs of primary melts implaying both mantle and mixed mantle-crustal their origin. The evolution of the petrochemical features of basic rocks, in our opinion, is in better agreement with their formation as result of differentiation of the primary high-alumina tholeiitic melt, significantly contaminated by lower crustal material. This determined the subalkaline nature of basic rocks and a significant predominance of norites, in comparition to more typical gabbros, and monzonites. In contrast to the previously proposed hypotheses of the formation of intermediate rocks because of partial melting of felsic rocks by basic intrusions, or mingling of basic and acidic melts, some of petrochemical features and geological position can be satisfactorily explained by their crystallization from the residual melt.

Keywords: gabbro-anorthosite plutons, Korsun’-Novomyrhorod pluton, Ukrainian Shield, anorthosites, rapakivi, monzonites.


  1. Bakhmutov, V.G., Mitrokhin, A.V., Polyachenko, E.B., and Cherkes, S.I. (2020), Abstr. of Int. Sci. Conf. (Kyiv, Septem. 22-24, 2020, NAS of Ukraine, M.P. Semenenko IGMOF, Kyiv, pp. 121-124 [in Russian].
  2. Gatsenko, V.O., Shestopalova, O.Ye. and Kushnir, S.V. (2019), Coll. thesis. Science. conf. "Achievements and prospects for the development of geological science in Ukraine", May 14-16, Kyiv, UA,. pp. 176-177 [in Ukrainian].
  3. Gatsenko, V.O., Shumlyanskyy, L.V. and Kislukhina, N.M. (2019), Abstr. of Sci. Conf., dedicated to the 50th Anniversary of M.P. Semenenko In-te of Geochemistry, Mineralogy and Ore Formation (Kyiv, May 14-16, (2019), In 2 vol., NAS of Ukraine, M.P. Semenenko IGMOF, Vol. 2, Kyiv, UA, pp. 178-179 [in Ukrainian].
  4. Holubev, V.A., Sanin, V.P. and Kudelya, Yu.A. (1973), Geological map of pre-Mesozoic surface with explanatory note, The Centralnoukraynskaya series. Sheet M-36-XX. Moscow, RU, 124 p. [in Russian].
  5. (2001) Geological and mineral maps of crystal base, 1 : 200 000, The Centralnoukraynskaya series, Sheet M-36-XXXII (Novoukrayinka) with explanatory note, Kyiv, UA [in Ukrainian].
  6. (2004) Geological and mineral maps of crystal base (1 : 200 000), The Centralnoukraynskaya series, Sheet M-36-XXVII (Znam’yanka) with explanatory note, Kyiv, UA [in Ukrainian].
  7. (2007) Geological and mineral maps of crystal base, 1 : 200 000, The Central’noukraynskaya series, Sheet M-36-XXXIII (Kirovohrad) with explanatory note, Kyiv, UA [in Ukrainian].
  8. (1993) Granitoids of Ukrainian Shield, Handbook, in Shcherbak, N.P. (ed.), Nauk. dumka, Kyiv, UA, 133 p. [in Russian].
  9. Ilchenko, T.V. (2003), Dopov. Nac. akad. nauk Ukr., No. 7, pp. 100-106 [in Russian].
  10. Yoder, H.S. (ed) (1983), The Evolution of the Igneous Rocks, Mir press, Moscow, 528 p. [in Russian].
  11. Kononov, Yu.V. (1966), The Gabbroid massifs of the Ukrainian Shield, Nauk. dumka, Kyiv, UA, 100 p. [in Ukrainian].
  12. Kononov, Yu.V., Kononova, M.M. and Sharkin, O.P. (1989), Phase transformations in rock-forming silicates, Nauk. dumka, Kyiv, UA, 180 p. [in Russian].
  13. Kryvdik, S.G., Guravsky, T.V., Dubyna, O.V., Bratchuk, O.M., Markhai, O.I., Nechayenko, O.M. and Yakubenko, P.F. (2009), Mineral. Journ. (Ukraine), Vol. 31, No. 3, Kyiv, UA, pp. 55-78 [in Ukrainian]. https://doi.org/10.15407/mineraljournal
  14. Kryvdik, S.G. and Dubyna, O.V. (2005), Mineral. Journ. (Ukraine), Vol. 27, No. 1, Kyiv, UA, pp. 64-76 [in Ukrainian]. https://doi.org/10.15407/mineraljournal
  15. Kryvdik, S.G., Orsa, V.I. and Bryansky, V.P. (1988), Geol. Journ., No. 6, Kyiv, UA, pp. 43-53 [in Russian].
  16. Lichak, I.P. (1983), Petrology of the Korosten pluton, Nauk. dumka, Kyiv, UA, 248 p. [in Russian].
  17. Mitrokhin, O.V. (2001), Petrology of gabbro-anorthosite massifs of Korosten pluton, Avtoref. dys. of cand. geol. sci., Kyiv, 16 p. [in Ukrainian].
  18. Mitrokhyn, O.V. (2011), Anorthosite-rapakivi-granite complex of the Ukrainian Shield (geology, material composition and formation conditions), Avtoref. dys. of dokt. geol. sci., Kyiv, UA, 36 p. [in Ukrainian].
  19. Mitrokhina, T.V. (2009), The geological structure, composition and conditions of generation of titanium-bearing gabbroid intrusions of the Volyn megablock of the Ukrainian Shield, Avtoref. dys. kand. heol. nauk, Kyiv, UA, 26 p. [in Ukrainian].
  20. Ponomarenko, O.M., Zayats, O.V., Dovbush, T.I., Bezvynny, O.P. and Tsyba, M.M. (2011), Geochem. and ore formation, Vyp. 30, Kyiv, UA, pp. 18-26 [in Ukrainian].
  21. Ponomarenko, O.M., Kryvdik, S.G. and Dubyna, O.V. (2012), The endogenous apatite-ilmenite deposits of the Ukrainian Shield (geochemistry, petrology and mineralogy), Nowledge, Donetsk, UA, 230 p. [in Ukrainian].
  22. Sveshnikov, K.I. (1981), Geol. Journ., No. 4, Kyiv, UA, pp. 62-68 [in Russian].
  23. Sobolev, V.S. (1947), Petrology of the eastern part of the complex Korosten pluton, Lvovsk. Univ., Lvov, UA, 140 p. [in Russian].
  24. Tarasenko, V.S. (1990), Izv. Acad. Sci. SSSR, No. 8, pp. 35-44 [in Russian].
  25. Tkachenko, K.O. (2010), Geological study of (1:200 000) of the territory of M-36-XXVI sheet (Smila), Kirovohrad and Cherkasy regions, Cherkasy, UA [in Ukrainian].
  26. Trypolsky, A.A., Kalyuzhnaya, L.G. and Omelchenko, V.D. (2000), Geophys. Journ., No. 6, Kyiv, UA, pp. 121-137 [in Russian].
  27. Trypolsky, A.A. and Sharov, N.V. (2004), The lithosphere of the Precambrian shields of the Northern hemisphere of the Earth according to seismic data, KarNC RAS, Petrozavodsk, RU, 159 p. [in Russian].
  28. Shestopalova, O.Ye. (2017), The geochronology of the Korsun-Novomyrhorod Pluton, Avtoref. dys. kand. heol. nauk, Kyiv, UA, 20 p. [in Ukrainian].
  29. Scherbakov, I.B. (1975), Petrography of Precambrian rocks of the central part of the Ukrainian Shield, Nauk. dumka, Kyiv, UA, 280 p. [in Russian].
  30. Scherbakov, I.B. (2005), Petrology of the Ukrainian Shield, ZUKC publ., Lviv, UA, 366 p. [in Russian].
  31. Yatsenko, V.G. (1996), The structural-morphological and genetic types of graphite on the example of deposits of the Ukrainian Shield, Avtoref. dys. kand. heol. nauk, Kyiv, UA, 24 p. [in Russian].
  32. Ashwal, L.D. (1993), Anorthosites. Minerals and rocks, Vol. 21, Springer, Berlin, Heidelberg, pp. 83-218. https://doi.org/10.1007/978-3-642-77440-9
  33. Ashwal, L.D., Wooden, J.L. and Emslie, R.F. (1986), Geochim. et Cosmochim. Acta, Vol. 50, pp. 2571-2585. https://doi.org/10.1016/0016-7037(86)90211-5
  34. Barker, F., Wones, D.R., Sharp, W.N. and Desborough, G.A. (1975), Precam. Res., Vol. 2, рp. 97-160. https://doi.org/10.1016/0301-9268(75)90001-7
  35. Bogdanova, S.V., Pashkevich, I.K., Buryanov, V.B., Makarenko, I.B., Orlyuk, M.I., Skobelev, V.M., Starostenko, V.I. and Legostaeva, O.V. (2004), Tectonophysics, Vol. 381, pp. 5-27. https://doi.org/10.1016/j.tecto.2003.10.023
  36. Charlier, В. (2007), Petrogenesis of magmatic iron-titanium deposits associated with Proterozoic massif-type anorthosites, Universite de Liege, 165 p.
  37. Duchesne, J.-C., Shumlyanskyy, L.V. and Mytrokhyn, O.V. (2017), Precam. Res., Vol. 299, pp. 58-74. http://dx.doi.org/10.1016/j.precamres.2017.07.018
  38. Emslie, R.F. (1978), Precam. Res., Vol. 7, pp. 61-98. https://doi.org/10.1016/0301-9268(78)90005-0
  39. Fred, R., Heinonen, A. and Heinonen, J.S. (2020), Contribs Mineral. and Petrol., Vol. 175, pp. 85-111. https://doi.org/10.1007/s00410-020-01726-9
  40. Longhi, J. (2005), Lithos, Vol. 83, pp. 183-198. https://doi.org/10.1016/j.lithos.2005.03.009
  41. Longhi, J., Vander, Auwera J., Fram, M.S. and Duchesne, J.-C. (1999), Journ. Petrol., Vol. 40, pp. 339-362. https://doi.org/10.1093/petroj/40.2.339
  42. Mitchell, J.N., Scoates, J.S. and Frost, C.D. (1995), Contribs Mineral. and Petrol., Vol. 119, pp. 166-180. https://doi.org/10.1007/BF00307279
  43. Owens, B.E. and Dymek, R.F. (1992), Canad. Mineral., Vol. 30(1), pp. 163-190.
  44. Putirka, K., Johnson, M., Kinzler, R., Longhi, J. and Walker, D. (1996), Contribs Mineral. and Petrol., Vol. 123, pp. 92-108. https://doi.org/10.1007/s004100050145
  45. Roeder, P.L. and Emslie, R.F. (1970), Contribs Mineral. and Petrol., Vol. 29, pp. 275-289. https://doi.org/10.1007/BF00371276
  46. Scoates, J.S. and Mitchell, J.N. (2000), Econom. Geol., Vol. 95, pp. 677-701. https://doi.org/10.2113/95.4.677
  47. Shumlyanskyy, L., Hawkesworth, C., Billström, K., Bogdanova, S., Mytrokhyn, O., Romer, R., Dhuime, B., Claesson, S., Ernst, R., Whitehouse, V. and Bilan, O. (2017), Precam. Res., Vol. 292, pp. 216-239. https://doi.org/10.1016/ j.precamres.2017.02.009
  48. Vander, Auwera J., Bolle, O., Bingen, B., Liégeois, J.P., Bogaerts, M., Duchesne, J.-C., De Waele, B. and Longhi, J. (2011), Earth Sci. Rev., Vol. 107, pp. 375-397. https://doi.org/10.1016/j.earsc irev.2011.04.005