B.G. Shabalin, MINERAL COMPOSITION AND ADSORPTION CAPACITY OF PRECIPITATES FORMED DURING OZONATION OF RADIOACTIVELY CONTAMINATED WATER FROM NUCLEAR POWER PLANTS TOWARDS 137Cs

https://doi.org/10.15407/mineraljournal.44.02.060

UDC 621.039.73

MINERAL COMPOSITION AND ADSORPTION CAPACITY OF PRECIPITATES FORMED DURING OZONATION OF RADIOACTIVELY CONTAMINATED

WATER FROM NUCLEAR POWER PLANTS TOWARDS 137Cs

B.G. Shabalin, Dr.Sc. (Geology), Head of Department

E-mail: b_shabalin@ukr.net; orcid: 0000-0002-6425-5999 

K.K. Yaroshenko, PhD (Engineering), Researcher

E-mail: igns.yaroshenko@gmail.com; orcid: 0000-0002-7180-4642 

O.M. Lavrynenko, Dr.Sc. (Chemistry), Leading Researcher

E-mail: alena.lavrynenko@gmail.com; orcid: 0000-0002-5271-2048 

N.B. Mitsiuk, Junior Researcher

E-mail: nmitsiuk@gmail.com; orcid: 0000-0003-3875-007X 

State Institution "The Institute of Environmental Geochemistry

of National Academy of Sciences of Ukraine"

34-a, Acad. Palladin Ave., Kyiv, Ukraine, 03142

Language: Ukrainian

Mineralogical journal 2022, 44 (2):60-68

Abstract: The mineral composition and sorption properties of precipitates formed during ozonation of a model solution simulating nuclear power plant wastewater (total mineralization 7 g/dm3, pH = 11.5, T = 60°C, t = 2 hours) 137Cs were studied. The precipitate is represented by finely dispersed spherical particles of metal oxides ranging in size from 20 to 30 nm, forming microaggregates and their associates of various shapes. The composition of the precipitates, along with X-ray amorphous phases, includes Fe(II)-Fe(III) layered double hydroxides (Green Rust), as well as LDH of mixed composition, in particular Fe-Co, and iron oxyhydroxides — goethite and lepidocrocite. The precipitates also contain manganese-containing phases represented by manganese (IV) hydroxide and manganese (II) carbonate with an admixture of manganese oxides, such as Mn2O3∙H2O, MnO, Mn3O4 (gaussmanite). In the process of ozonation, organic compounds that are part of the solutions undergo destruction, co-precipitation with other components of the solution, which is accompanied by the sorption of 137Cs radionuclides on the surface of mineral particles. An increase in the concentration of Fe2+ and Mn2+ cations by 10 times (up to 50 and 100 mg/dm3, respectively) in wastewater reduces the concentration of 137Cs in the initial solution by 50.5%.

Keywords: NPP wastewater, ozonation, precipitates, chemical and mineral composition, adsorption, cesium.

References:

  1. Andronov, O.B. (2015), Problemy bezpeky atomnykh elektrostantsiy i Chornobylia, Vol. 24, Kyiv, UA, pp. 32-41 [in Russian].
  2. Babenkov, E.D. (1974), Ochistka vody koahuliantami, Nauka, Мoscow, RU, 356 p. [in Russian].
  3. Petrovskaia, N.V. (ed.) (1975), Gipergennye okisly zheleza v geologicheskih processah, Nauka, Moscow, RU, 207 p. [in Russian].
  4. Zhabrova, H.M. and Ehorov, E.V. (1961), Uspekhi khymii, Vol. 30, Iss. 6, pp. 764-776 [in Russian]. https://doi.org/10.1070/RC1961v030n06ABEH002987
  5. Karaseva, O.N., Ivanova, L.I. and Lakshtanov, L.Z. (2019), Geochemistry, Vol. 64, No. 10, Moscow, RU, pp. 1091-1104 [in Russian]. https://doi.org/10.31857/S0016-752564101091-1104
  6. Kuznetsov, V.A. and Heneralova, V.A. (2000), Radiokhimiia, Vol. 42, No. 2, pp. 154-157 [in Russian]. https://doi.org/10.1034/j.1600-0498.2000.d01-156.x
  7. Kuznetsov, Yu.V., Shchebetkovskiy, V.Ya. and Trusov, A.H. (1974), Osnovy ochistki vody ot radioaktivnykh zahriazneniy, Atomizdat, Moscow, RU, 232 p. [in Russian].
  8. Lavrynenko, O.M. (2016), Nano Studies, No. 13, рр. 93-116 [in Russian].
  9. Melikhov, I.V. and Merkulova, M.S. (1975), Sokristallizatsiia, Chemistry press, Moscow, RU, 280 p. [in Russian].
  10. Neimark, Y.E. (1982), Sinetycheskie mineralnye adsorbenty i nositeli katalizatorov, Nauk. dumka, Kyiv, UA, 216 p. [in Russian].
  11. Nikoladze, H.I. (1978), Obezzhelezivanie prirodnykh i oborotnykh vod, Stroiyzdat press, Moscow, RU, 160 p. [in Russian].
  12. Povarennykh, A.S. (1966), Kristallokhimicheskaia klassifikatsiia mineralnykh vidov, Nauk. dumka, Kyiv, UA, 547 p. [in Russian].
  13. (2016) Povodzhennia z radioaktyvnymy vidkhodamy pry ekspluatatsii AES DP "NAEK "Enerhoatom". Zvit, Kyiv, UA, 2016, 137 p. [in Ukrainian].
  14. Raspopov, Yu.H. (1982), in Issledovaniia v oblasti tekhnolohii dvuokisi titana i zhelezosoderzhashchikh pihmentov, Moscow, RU, pp. 87-93 [in Russian].
  15. (2014) Пат. UA 88709 U. Ustanovka dlia ochyshchennia vody vid orhanichnykh spoluk, in Pliatsuk, L.D. and Roi, I.O., Published 25.03.2014, Bull. No. 6 [in Ukrainian].
  16. Chalyi, V.P. (1972), Hidrookisi metallov (zakonomernosti obrazovaniia, sostav, struktura i svoistva), Nauk. dumka, Kyiv, UA, 158 p. [in Russian].
  17. Charnyi, D.V. and Matseliuk, Ye.M. (2019), VI Int. sci.-pract. conf. "Chysta voda. Fundamentalni, prykladni ta promyslovi aspekty", 14-15 Novem. 2019, Kyiv, UA, pp. 211-213 [in Ukrainian].
  18. Shabalin, B.G. and Lavrynenko, O.M. (2020), Yaderna enerhetyka ta dovkillia, No. 3(18), Kyiv, UA, pp. 66-89 [in Ukrainian]. https://doi.org/10.31717/2311-8253.20.3.8 
  19. Shabalin, B.G., Lavrynenko, O.M., Yaroshenko, K.K., Vember, V.V. and Buhera, S.P. (2021), XХIІ Int. sc.-pract. conf. "Ecology. Human. Sociaty", Kyiv, UA, pp. 272-276 [in Ukrainian].
  20. Yaroshenko, K.K., Shabalin, B.G. and Bondarenko, G.M. (2020), Yaderna enerhetyka ta dovkillia, No. 4(19), Kyiv, UA, pp. 32-39 [in Ukrainian]. https://doi.org/10.31717/2311-8253.20.4.4 
  21. Babuponnusami, A. and Muthukumar, K. (2014), Environ. Chem. Eng., Vol. 2, pp. 557-572. https://doi.org/10.1016/j.jece.2013.10.011
  22. (2003) Combined methods for liquid radioactive waste treatment. Final report of a coordinated research project 1997-2001 IAEA-TECDOC-1336, pp. 121-136.
  23. Martell, A.E. and Smith, R.M. (1974), Critical stability. Plenum Press, Vol. 3, New York, USA, 496 p.
  24. (2014) Mobile processing systems for radioactive waste management. Series No. NW-T-1.8, Int. Atomic Energy Agency, Vienna, AT, 119 p.
  25. Munter, R. (2001), Proc. Estonian Acad. Sci. Chem., Vol. 50, No. 2, pp. 59-80. https://doi.org/10.3176/chem.2001.2.01
  26. (2003) Powder diffraction file 2003, PDF-2, Database. URL: https://www.icdd.com/pdf-2/ (Last accessed: 04.02.2022).
  27. Sam, A., Sam, W., Wooyong, U., Claire, L., Corkhill, N. and Corkhill, C.H. (2021), Materials Degradation, No. 5 (50). https://doi.org/10.1038/s41529-021-00192-3 
  28. Valsala, T.P., Joseph Annie, Sonar, N.L., Sonavane, M.S., Shah, J.G., Raj Kanwar and Venugopal, V. (2010), J. Nuclear Mater., Vol. 404 (2), pp. 138-143. https://doi.org/10.1016/j.jnucmat.2010.07.017

PDF

English