V.G. Verkhovtsev, BACTERIAL LEACHING OF BALANCED ORES OF ALBITITE DEPOSITS OF THE UKRAINIAN SHIELD

https://doi.org/10.15407/mineraljournal.45.01.072

UDC 606:661.8+553.49:550.42

BACTERIAL LEACHING OF BALANCED ORES

OF ALBITITE DEPOSITS OF THE UKRAINIAN SHIELD

V.G. Verkhovtsev, D.Sc. (Geology), Senior Research Fellow, Head of department

E-mail: Verkhovtsev@ukr.net; orcid: 0000-0002-1015-6725 

O.G. Musich, PhD (Biology), Senior Researcher

E-mail: nad79eva@ukr.net; orcid: 0000-0003-3874-741X 

Yu.O. Fomin, PhD (Geology, Mineralogy), Assist. Prof., Lead Researcher

E-mail: yaf1941@gmail.com; orcid: 0000-0002-3043-8359 

Yu.M. Demikhov, PhD (Geology, Mineralogy), Senior Research Fellow, Head of laboratory

E-mail: y_demikhov@ukr.net; orcid: 0000-0002-3576-6570 

State Institution "The Institute of Environmental Geochemistry

of National Academy of Sciences of Ukraine"

34а, Acad. Palladin Ave., Kyiv, Ukraine, 03142

Language: Ukrainian

Mineralogical journal 2023, 45 (1): 72-82

Abstract: Prospects for increasing the raw materials resources of uranium ore deposits of the albite formation of the Ingul megablock of the Ukrainian Shield and the possibility of reducing the impact of harmful waste due to the method of bacterial leaching of metals were considered. Mineral-forming systems of uranium-bearing albitites of the Ukrainian Shield have always been considered as monoelement, exclusively uranium objects. However, their out-of-balance ores and tailings contain elevated, up to industrial, concentrations of other metals, which, under conditions of hypergenic processes, pose a potential threat of environmental pollution. In order to determine the possibility of expanding raw materials resources of albite deposits of the Ukrainian Shield due to the use of the method of bacterial leaching of metals, the composition of industrial ores and host rocks was considered. In particular, our data from their mineralogical and geochemical research showed that uranium and five of its companion elements: thorium, vanadium, beryllium, zirconium and lead reach industrial content. At the same time, cobalt, nickel and zinc are characterized by an increased content close to the minimum industrial values. The most promising for bacterial leaching are rocks that contain sulfides. The rocks of the uranium ore albitite formation contain sulfur-containing compounds and, in particular, pyrite, as well as bi- and trivalent iron. We found the highest content of sulfides in albitized rocks (up to 0.82%), ore-free albitites (up to 0.81%), low-ore albitites (up to 0.61%), that is, in rocks accumulated in industrial waste. It is assumed that the use of bacterial leaching methods with the participation of chemolithotrophic microorganisms can be promising for the processing of off-balance ores and will contribute to the expansion of the raw material base of albite deposits of the Ukrainian Shield, due not only to uranium, but also to nickel, cobalt and zinc.

Keywords: uranium ore albitites, bacterial leaching, uranium, satellite elements, for balance ores, chemolithotrophs.

References:

  1. Beisembaev, В.B., Kunaev, A.M. and Kenzhaliev, В.K. (1998), Theory and practice of heap leaching of copper, Gylym publ., Almaty, Kazakhstan, 346 p. [in Russian].
  2. Bruinstejn, A. (1985), Biogeotehnologiya metallov, Trudy Mezhdunar. seminara i Mezhdunar. uchebnyh kursov, Moskva, RU, pp. 326-339 [in Russian].
  3. Veklov, V.A., Mitrakov, O.E., Zajnetdinova, L.I. i dr. (2006), Geotehnologiya, No. 3, pp. 50-52 [in Russian].
  4. Volkova, T.P. and Demina, E.Yu. (2007), Zb. nauk. prats Donetskogo Nac. Tehn. Un-tu, UA, pp. 43-53 [in Russian].
  5. Belevtsev, Ya.N. and Koval, V.B. (eds) (1995), Geneticheskie tipy i zakonomernosti razmesheniya uranovyh mestorozhdenij Ukrainy, Nauk. dumka, Kyiv, 396 p. [in Russian].
  6. Derbasova, N.M., Gavrish, M.V., Smirnov, S.B. and Gavrish, V.M. (2011), Yadernaya i radiatsionnaya bezopasnost, 2(50), Simferopol, pp. 52-55 [in Russian] https://doi.org/10.32918/nrs.2011.2(50).10 
  7. Dir, U.A., Haui, R.A. and Zusman, Dzh. (1965), Porodoobrazuyushie mineraly, Vol. 1, 371 p.; Vol. 2. 405 p.; Vol. 3, 317 p., Mir, Moskva [in Russian].
  8. Belevtsev, Ya.N. (otv. red.) (1968), Zakonomernosti obrazovaniya i razmeshcheniya uranovyh mestorozhdenij Ukrainy, Kyiv, 763 p. [in Russian].
  9. Kuzyakina, T.I., Hajnasova, T.S. and Levenec, O.O. (2008), Vestnik KRAUNC. Nauki o Zemle, Vol. 2, No. 12, Petropavlovsk-Kamchatsky, RU, pp. 76-86 [in Russian].
  10. Kulebakin, V.G. (1978), Bakterialnoe vyshelachivanie sulfidnyh mineralov, Nauka, Novosibirsk, RU, 264 p. [in Russian].
  11. Lisitsyn, A.K. and Kuznetsova, E.G. (1967), Izv. AN SSSR. Ser. geol., No. 1, p. 31 [in Russian].
  12. Lisitsyn, A.K. (1980), Znachenie biohimicheskih processov v osazhdenii urana na vosstanovitelnom geohimicheskom barjere, in Perelman, A.I. "Gidrogennye mestorozhdeniya urana", Atomizdat, Moskva, RU, pp. 67-71. URL: https://search.rsl.ru/ru/record/01001015268 (Last accessed: 12.08.2022).
  13. Markosyan, G.E. (1972), Mikrobiolog. zhurn. Armenii, Vol. 35, No. 2, pp. 26-29 [in Russian].
  14. Mitskevich, B.F., Sushchik, Yu.Ya. and Samchuk, A.I. (1984), Fiziko-himicheskie usloviya formirovaniya ekzogennyh oreolov i potokov rasseyaniya berilliya, Nauk. dumka, Kyiv, 176 p. [in Russian].
  15. Musych, E.G. and Demihov, Yu.N. (2014), Sb. nauch. tr. In-ta geokhimii okruzhayushchey sredy, Vyp. 23, Kyiv, pp. 110-122 [in Russian]. URL: http://dspace.nbuv.gov.ua/handle/123456789/140423 (Last accessed: 12.08.2022).
  16. Panin, V.V., Karavajko, G.I. and Pol'kin, S.I. (1985), Mehanizm i kinetika bakterialnogo okisleniya sulfidnyh mineralov, Trudy Mezhdunar. seminara i Mezhdunar. uchebnyh kursov, Moskva, RU, pp. 203-221 [in Russian].
  17. Pivovarova, T.A., Kondratieva, T.F. and Karavayko, G.I. (2007), Tezisy 4-go Moskovskogo Mezhdunar. kongr. "Biotehnologiya: sostoyanie i perspektivy razvitiya", Ch. 2, Moskva, RU, p. 323 [in Russian].
  18. Pol'kin, S.I., Adamov, E.V. and Panin, V.V. (1982), Tehnologiya bakterialnogo vyshchelachivaniya tsvetnyh i redkih metallov, Nedra, Moskva, RU, 288 p. [in Russian].
  19. Sidyakina, G.G. (2005), Stroitel'stvo i tekhnogen. bezopasnost', Iss. 10, pp. 169-173 [in Russian].
  20. Fomina, O. (2010), Energetika Ukrainy, No. 11, Kyiv, pp. 18-38 [in Russian].
  21. Shcherbina, V.V. (1972), Osnovy geohimii, Nedra, Moskva, RU, 296 p. [in Russian].
  22. Brierley, J.A. and Hill, D.Z. (1993), Biooxidation process for recovery of metal values from sulfur-containing ore materials. Patent (USA) No. 5, 834. Bulletin 93/02, European Patent Office, Applic. publ. date: 13.01.93, Applic. number: 92402026.6 C22B 3/18
  23. Brown, A.R.G. and Van Aswegen, P.C. (1998), Paper presented at the Mineral Processing and the Hydrometallurgy Plant Design Conf. World’s Best Practice, Perth, Australia.
  24. Colmer, A.R. and Hinkle, M.E. (1947), Science, Vol. 106, No. 2751, pp. 253-256. https://doi.org/10.1126/science.106.2751.253
  25. Gericke, M. and Pinches, A. (1999), Minerals Engineering, Vol. 12, pp. 893-904. https://doi.org/10.1016/S0892-6875(99)00076-X
  26. Guay, R. and Silver, M. (1975), Canad. J. Microbiology, Vol. 21, No. 3, pp. 281-288. https://doi.org/10.1139/m75-040
  27. (2022) Mining-encyclopedia. URL: http://mining-enc.com/b/bacterial-leaching-of-the-metals/ (Last accessed: 12.09.2022).
  28. Sand, W., Gehrke, T., Jozsa, P.-G. and Schippers, A. (2001), Hydrometallurgy, Vol. 59, Iss. 2-3, pp. 159-175. https://doi.org/10.1016/S0304-386X(00)00180-8 
  29. Schueler, T.A., de Aguiar, P.F., Vera, Y.M. and Goldman, D. (2021), J. Sustain. Metall., Vol. 7, pp. 1523-1536. https://doi.org/10.1007/s40831-021-00446-z 
  30. Tributsch, H. (2001), Hydrometallurgy, Vol. 59, Iss. 2-3, pp. 177-185. https://doi.org/10.1016/S0304-386X(00)00181-X 

PDF

English