RUTILE-DIAMOND INTERGROWTHS FROM UDACHNAYA KIMBERLITE PIPE (YAKUTIA)

УДК 549.514.63 : 549.211

https://doi.org/10/15407/mineraljournal.39.03.017

V.M. Kvasnytsya, O.A. Vyshnevskyi

M.P. Semenenko Institute of Geochemistry,

Mineralogy and Ore Formation of the NAS of Ukraine

34, Acad. Palladin Ave., Kyiv, Ukraine, 03142

E-mail: vmkvas@hotmail.com, vyshnevskyy@i.ua

RUTILE-DIAMOND INTERGROWTHS FROM UDACHNAYA KIMBERLITE PIPE (YAKUTIA)

Language: Ukrainian

Mineralogical journal 2017, 39 (3): 17-31

Abstract: Among small diamonds from Udachnaya kimberlitic pipe (Yakutia) we found rare unique rutile-diamond intergrowths. Their morphology indicates syngenetic growth of diamond and rutile crystals. Diamond crystals are slightly colored, have different imperfect morphology: octahedron, transitional form {111}—{110}, dodecahedron. Rutile was identified by means of microprobe analysis. Red and brown- red crystals of rutile have a xenomorphic form, their size does not exceed 0.3 mm. Average chemical composition of rutile: TiO2 — 98.0 %, Al2O3 — 0.9 %, Fe2O3 — 0.3 %, Cr2O3 — traces. At high magnifications on SEM in part of rutile crystals the needle-shaped and "lens-like" exsolution lamellae, which possibly belong to Fe2O3, are fixed. A size of needle-shaped lamellae varies within 1—20 microns, thicker "lens-like" — 1—10 microns on lengthening. Also the surface of rutile crystals is covered by the different sculptures of dissolution. The quadrangular pyramidal and geometrically irregular dissolution cavities ornamented the surface of the majority of rutile crystals. Two more types of dissolution sculptures of rutile crystals surface have the appearance of "takyr" (soil), or clusters of elongated "plate-like" figures. On the basis of literary review the studied rutile is compares with rutile of different diamondiferous and diamond free associations from kimberlites and lamproites. The results of such comparison testify that the studied rutile-diamond intergrowths from Udachnaya kimberlitic pipe belong to eclogitic parageneses, id est, they serve to specify "eclogitic" environment of diamond crystals growth.

Keywords: rutile-diamond intergrowths, exsolution lamellae, eclogitic association, kimberlites, Udachnaya pipe, Yakutia.

References

  1. Alifirova, T.A. (2015), Produkty raspada tverdykh rastvorov v granatakh i piroksenakh (na materiale mantiynykh ksenolitov iz kimberlitov), Avtoref. dis. kand. geol.-mineral. nauk, Novosibirsk, RU, 21 p.
  2. Afanas'yev, V.P., Agashev, A.M., Orikhashi, Y.U., Pokhilenko, N.P. and Sobolev, N.V. (2009), Dokl. Akad. nauk, Vol. 428, No. 2, RU, pp. 228-232.
  3. Bogatikov, O.A., Garanin, V.K., Kononova, V.A., Kudryavtseva, G.P., Vasil'yeva, Ye.R., Verzhak, V.V., Verichev, Ye.M., Parsadanyan, K.S. and Posukhova, T.V. (1999), Arkhangel'skaya almazonosnaya provintsiya (geologiya, petrografiya, geokhimiya i mineralogiya), Izd-vo Moscow Gos. Univ., Moscow, RU, 524 p.
  4. Jaques, A.L., Lewis, J.D. and Smith, C.B. (1989), The Kimberlites and Lamproites of Western Australia, in Sobolev, N.V. (ed.), Mir, Moscow, RU, 430 p.
  5. Dawson, J.B. (1983), Kimberlites and Their Xenoliths, in Sobolev, V.S. (ed.), Mir, Moscow, RU, 300 p.
  6. Koval'skiy, V.V., Bulanova, G.P., Nikishov, K.N., Botkunov, A.I., Makhotko, V.F., Shestakova, O.Ye. and Gotovtsev, V.V. (1979), Dokl. AN SSSR, Vol. 247, No. 4, RU, pp. 946-951.
  7. Korolev, N.M., Marin, Yu.B., Nikitina, L.P., Zinchenko, V.N. and Shissupa, U.M. (2014), Dokl. Akad. nauk, Vol. 454, No. 2, RU, pp. 207-210.
  8. Mal'kov, B.A. (2008), Mir mineralov, kristallov i nanostruktur (k 60-yu A.M. Ashabova), Geoprint, Syktyvkar, RU, pp. 79-85.
  9. Matsyuk, S.S. and Zinchuk, N.N. (2001), Opticheskaya spektroskopiya mineralov verkhney mantii, Nedra-Biznestsentr press, Moscow, RU, 428 p.
  10. Mityukhin, S.I. and Spetsius, Z.V. (2005), Geologiya i geofizika, Vol. 46, No. 12, RU, pp. 1246-1258.
  11. Putnis, A. and McConnell, J.D.C. (1983), Principles of Mineral Behaviour, Mir, Moscow, RU, 304 p.
  12. Ragozin, A. L., Zedgenizov, D. A., Shatskiy, V. S., Orikhashi, Yu., Agashev, A.M. and Kagi, K. (2014), Dokl. Akad. nauk, Vol. 457, No. 2, RU, pp. 213-216.
  13. Spetsius, Z.V. and Serenko, V.P. (1990), Sostav kontinental'noy verkhney mantii i nizov kory pod Sibirskoy platformoy, Nauka, Moscow, RU, 272 p.
  14. Sobolev, N.V. (1974), Glubinnyye vklyucheniya v kimberlitakh i problema sostava verkhney mantii, Nauka, Novosibirsk, RU, 264 p.
  15. Sobolev, N.V., Lavrent'yev, Yu.G. and Usova, L.V. (1972), Geologiya i geofizika, No. 11, RU, pp. 108-112.
  16. Appelyard, C.M., Bell, D.R. and le Roex, A.P. (2007), Contribs Mineral. Petrol., Vol. 154, pp. 309-333.
  17. Banas, A., Stachel, T., Muehlenbachs, K. and McCandless, T.E. (2007), Lithos, Vol. 93, pp. 199-213.
  18. Boctor, N.Z. and Boyd, F.R. (1981), Contribs Mineral. Petrol., Vol. 76, pp. 253-259.
  19. Deines, P. and Harris, J.W. (2004), Lithos, Vol. 77, pp. 125-142.
  20. Elton, D. and Ridley, W.I. (1979), Kimberlites, diatremes, and diamonds: their geology, petrology, and geochemistry, AGU, Washington, pp. 206-216.
  21. Heaman, L.M., Creaser, R.A., Cookenboo, H.O. and Chacko, T. (2006), J. Petrol., Vol. 47, No. 4, pp. 821-858.
  22. Haggerty, S.E. (1991), Rews in Mineral., Vol. 25, pp. 355-416.
  23. Hills, D.V. and Haggerty, S.E. (1989), Contribs Mineral. Petrol., Vol. 103, pp. 397-422.
  24. Kaminsky, F.V., Khachatryan, G.K., Andreazza, P., Araujo, D. and Griffin, W.L. (2008), 9th Intern. Kimberlite Conf. Extended Abstract, No. 9IKC-A-00005, DOI: https://10.1016/j.lithos.2009.03.036
  25. Konzett, J., Armstrong, R.A. and Gunter, D. (2000), Contribs Mineral. Petrol., Vol. 139, pp. 704-719.
  26. Kopylova, M.G., Mogg, T. and Scott Smith, B. (2010), Canad. Miner., Vol. 48, pp. 549-570.
  27. Malkovets, V.G., Rezvukhin, D.I., Belousova, E.A., Griffin, W.L., Sharygin, I.S., Tretiakova, I.G., Gibsher, A.A., O'Reilly, S.Y., Kuzmin, D.V., Litasov, K.D., Logvinova, A.M., Pokhilenko, N.P. and Sobolev, N.V. (2016), Lithos, Vol. 265, pp. 304-311.
  28. Meinhold, G. (2010), Earth-Science Reviews, Vol. 102, pp. 1-28.
  29. Meyer, H.A.O. and Svisero, D.P. (1975), Phys. Chem. Earth., Vol. 9, pp. 785-795.
  30. Mitchell, R.H. (1979), Kimberlites, diatremes, and diamonds: their geology, petrology, and geochemistry, AGU, Washington, pp. 161-171.
  31. Pivin, M., Berger, J. and Demaiffe, D. (2011), Eur. J. Mineral., Vol. 23, pp. 257-268.
  32. Rudnick, R.L., Barth, M., Horn, I. and McDonough, W.F. (2000), Science, Vol. 287, pp. 278-281.
  33. Schulze, D.J. (1990), Amer. Miner., Vol. 75, pp. 97-104.
  34. Shee, S.R. (1984), Kimberlites I: Kimberlites and related rocks, Elsevier, Amsterdam, NL, pp. 59-73.
  35. Sobolev, N.V., Kaminsky, F.V., Griffin, W.L., Efimova, E.S., Win, T.T., Ryan, C.G. and Botkunov, A.I. (1997), Lithos, Vol. 39, pp. 135-157.
  36. Sobolev, N.V. and Efimova, E.S. (2000), Intern. Geol. Rev., Vol. 42, No. 8, pp. 758-767.
  37. Sobolev, N.V., Logvinova, A.M., Lavrent’ev, Yu.G., Karmanov, N.S., Usova, L.V., Koz’menko, O.A. and Ragozin, A.L. (2011), Doklady Earth Sciences, Vol. 439, No. 1, pp. 970-973, DOI: https://10.1134/S1028334X11070099
  38. Stachel, T., Brey, G.P. and Harris, J.W. (2000), Contribs Mineral. Petrol., Vol. 140, pp. 1-15.
  39. Tollo, R.P. and Haggerty, S.E. (1987), Canad. Miner., Vol. 25, pp. 251-264.
  40. Wyatt, B.A. and Lawless, P.J. (1984), Kimberlites II: The mantle and crust-mantle relationships, Elsevier, Amsterdam, NL, pp. 43-56.
  41. Zhang, H., Menzies, M.A., Mattey, D.P., Hilton, R.W. and Gurney, J.J. (2001), Contribs Mineral. Petrol., Vol. 141, pp. 367-379.
  42. Zurevinski, S.E. and Mitchell, R.H. (2011), Contribs Mineral. Petrol., Vol. 161, pp. 765-776.
English