DIPYRAMIDAL ZIRCON CRYSTALS FROM ALKALINE ROCKS OF THE AZOV REGION

UDC 549.01 (477)

https://doi.org/10.15407/mineraljournal.38.03.009

Kvasnytsya V.M. (1), Vyshnevskyi O.A. (1), Kvasnytsya I.V. (2), Gurnenko I.V. (1)
(1) M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine
34, Acad. Palladina Pr., Kyiv-142, Ukraine, 03680
E-mail: vmkvas@hotmail.com; vyshnevskyy@i.ua
(2) Taras Shevchenko Kyiv National University
90, Vasylkivska Str., Kyiv, Ukraine, 03022
Е-mail: ikvasnytsya@gmail.com
DIPYRAMIDAL ZIRCON CRYSTALS FROM ALKALINE ROCKS OF THE AZOV REGION
Language:
Ukrainian
Mineralogical journal 2016, 38 (3): 9-23
Abstract: External and internal morphology of dipyramidal zircon macrocrystals up to 15 mm in size from alkaline rocks of the Azov region (mariupolites of the Oktyabrsky massif and syenites of the Azov deposit), their chemical composition and mineral inclusions in them were studied using goniometry, scanning electron microscopy and electron probe microanalysis. The questions of zircon crystallogenesis from these rocks have been considered. Dipyramidal zircon macrocrystals from mariupolites of the Oktyabrsky massif and syenites of the Azov deposit has the same sets of simple forms, but contrastingly different in a habit. Macrocrystals of zircon from mariupolites of Oktyabrsky massif has dipyramidal {111} habit, while macrocrystals of zircon from syenites of the Azov deposit has more complex dipyramidal {111} + {221} + {331} + {110} habit. Anatomical pictures of zircon macrocrystals from mariupolites of the Oktyabrsky massif and syenites of the Azov deposit are different. Two types of concentric growth zoning along (111) planes in zircon from mariupolites are observed: a) very thin rhythmic; b) narrow or relatively wide uneven, which is composed from the trapped mineral inclusions, mainly feldspar. Both types of zoning more often developed in the marginal parts of crystals. Such internal structure of crystals is often complicated by various patchy pictures. For zircon from syenites a fine growth zoning along {111}, {221}, {331} dipyramids and {110} prism is ordinary, while patchy heterogeneity of crystals is rare. Macrocrystals of zircon from mariupolites contains numerous mineral inclusions, whereas in zircon from syenites they are rare. The content of HfO2 and the ratio of ZrO2 /HfO2 in zircon macrocrystals from mariupolites of the Oktyabrsky massif and syenites of the Azov deposit is similar: average content of HfO2 — 1 % and ZrO2/HfO2 ratios vary from 67.0 to 74.4. Zircon macrocrystals from mariupolites of the Oktyabrsky massif contain following inclusions: Ti, Mn and Fe (possibly MnTiO3-FeTiO3) oxide, pyrochlore, Nb, Ta and Ce (possibly a change product of pyrochlore) oxide, Ce, La and Nd (cerianite ?) oxide, silicate of Zr, Ca and Na, Ca-catapleiite, aegirine, K-feldspar, albite, lepidomelane, monazite and xenotime. Zircon from syenites of the Azov deposit includes following minerals: dipyramidal macrocrystals — quartz, Ce, La (cerianite ?) oxide, K-feldspar, albite, xenotime and fluorite; prismatic microcrystals — galena, quartz, cerianite, britholite, allanite, monazite, apatite and fluorite. The influence of various internal and external factors on formation of the studied dipyramidal zircon crystals is considered. It was concluded that dipyramidal {111} zircon from mariupolites of the Oktyabrsky massif is a late magmatic mineral, formed in alkaline rocks with a high agpaitic factor as a result of dissolution of catapleiite and possibly recrystallization of small earlier zircon. Relatively low temperature of crystallization and high alkaline, silica and water environment favored maximal influence of the mineral structure features on its crystals faceting. Dipyramidal {111} + {221} + {331} + {110} zircon from syenites of the Azov deposit is early magmatic cumulative mineral that was formed in the alkaline rocks with a low agpaitic factor. High temperature of crystallization and rich in zirconium mineral-forming environment could be the decisive factors of its complex dipyramidal faceting.
Keywords: zircon, crystallomorphology, anatomy, chemical composition, mineral inclusions, crystallogenesis, alkaline rocks, Azov region.

References:

  1. Dubyna, O. and Kryvdik, S. (2012), Mineral. zb., Lviv, Ukraine, No 62 Vyp. 1, pp. 176-182.
  2. Kostyleva, E.E. (1932), Izv. AN SSSR, Ser. 7, No 8, pp. 1109-1125.
  3. Kryvdik, S.G., Voznyak, D.K., Sharygin, V.V. and Dubyna, O.V. (2012), Zap. Ukr. Mineral. tov-va, Kyiv, Vol. 9, pp. 7-34.
  4. Kryvdik, S.G. and Tkachuk, V.I. (1990), Petrologija shchelochnyh porod Ukrainskogo shchita, Nauk. dumka, Kyiv, UA, 408 p.
  5. Krochuk, V.M. (1984), Mineral. Journ. (Ukraine), Kyiv, Vol. 6 No 6, pp. 65-70.
  6. Krochuk, V.M., Legkova, G.V., Galaburda, Yu.A., Orsa, V.I. and Usova, L.V. (1989), Mineral. Journ. (Ukraine), Kyiv, Vol. 11 No 5, pp. 18-29.
  7. Ksenofontov, D.A., Kabalov, Yu.K., Pekov, I.V., Zubkova, N.V. and Kazantsev, S.S. (2015), Mineralnoe raznoobrazie - issledovanie i sohranenie, Sophia, Bulgaria, Vol. 7, pp. 55-58.
  8. Lazarenko, E.K., Lavrinenko, L.F., Buchinskaya, N.I., Galiy, S.A., Voznyak, D.K., Galaburda, Yu.A., Zatsiha, B.V., Ivanova, A.V., Kvasnytsya, V.M., Kulchytska, G.O., Kuts, V.P., Melnikov, V.S., Pavlyshyn, V.I. and Turkevich, G.I. (1981), Mineralogy of Azov region, Nauk. dumka, Kyiv, UA, 432 p.
  9. Melnikov, V.S., Voznyak, D.K., Grechanovskaya, E.E., Gursky, D.S., Kulchytska, G.O. and Strekozov S.N. (2000), Mineral. Journ. (Ukraine), Kyiv, Vol. 22 No 1, pp. 42-61.
  10. Chuhrov, F.V. (ed.) (1972), Mineraly, Sprav., Nauka, Moscow, RU, Vol. 3 Vyp. 1, 882 p.
  11. Nechaev, S.V., Kryvdik, S.G., Krochuk, V.M., Mitskevich, N.Yu. and Tkachuk, V.I. (1986), Mineral. Journ. (Ukraine), Kyiv, Vol. 8 No 2, pp. 45-46.
  12. Rudenko, S.A. (1957), Zap. Vses. Mineral. ob-va, Vol. 84 No 4, pp. 454-458.
  13. Rudenko, S.A. (1958), Zap. Vses. Mineral. ob-va, Vol. 85 No 4, pp. 513-517.
  14. Sheremet, E.M., Melnikov, V.S., Strekozov, S.N., Kozar, N.A., Voznyak, D.K., Kulchytska, H.O., Kryvdik, S.G., Borodynya, B.V., Volkova, T.P., Sedova, E.V., Omel’chenko, A.A., Nikolaev, I.Yu., Setaya, L.D., Agarkova, N.G., Grechanovskaya, E.E., Foshchiy, N.V. and Ekaterinenko, V.N. (2012), Azovskoe redkozemel’noe mestorozhdenie Priazovskogo megabloka Ukrainskogo shchita (geologiya, mineralogiya, geokhimiya, genezis, problemy ekspluataziі), Noulidzh, Donetsk, UA, 374 p.
  15. Benisek, A. and Finger, F. (1993), Contribs Mineral. and Petrol., Vol. 114, pp. 441-451. https://doi.org/10.1007/BF00321749
  16. Caruba, R. (1978), Can. Miner., Vol. 16, pp. 315-323.
  17. Caruba, R., Baumer, A. and Hartman, P. (1988), J. Crystal Growth., Vol. 88, pp. 297-302. https://doi.org/10.1016/0022-0248(88)90286-2
  18. Corfu, F., Hanchar, J.M., Hoskin, P.W.O. and Kinny, P. (2003), Rev. Mineral. Geochem., Vol. 53 (1), pp. 457-488. https://doi.org/10.2113/0530469
  19. Dumanska-Slowik, M., Sikorska, M. and Heflik, W. (2010), Sci. conf., dedicated the Memory of J.A. Morozewicz, Kyiv, 19-21 Sept., 2010, Kyiv, UA, pp. 26-27, available at: http://www.ptmin.pl/alkalinerocks/contact.html
  20. Dumanska-Slowik, M., Sikorska, M. and Heflik, W. (2011), Acta Geol. Pol., Vol. 61 No 3, pp. 277-288.
  21. Gagnevin, D., Daly, J.S. and Kronz, A. (2009), Contribs Mineral. and Petrol., Vol. 159, pp. 579-596. https://doi.org/10.1007/s00410-009-0443-0
  22. Geisler, T., Schaltegger, U. and Tomaschek, F. (2007), Elements, Vol. 3 No 1, pp. 43-50. https://doi.org/10.2113/gselements.3.1.43
  23. Goldschmidt, V. (1923), Atlas der Krystallformen, Band IX, Tafeln 101-113, Text, Carl Winters Universitats buchhandlung, Heidelberg, Germany, pp. 145-154.
  24. Hartman, P. (1956), Acta Cryst., Vol. 9, pp. 721-727. https://doi.org/10.1107/S0365110X56001984
  25. Hartman, P. and Perdok, G. (1955), Acta Cryst., Vol. 8, pp. 525-529. https://doi.org/10.1107/S0365110X55001680
  26. Khomenko, V., Stepanyuk, L., Kryvdik, S. and Ponomarenko, O. (2010), Sci. conf., dedicated the Memory of J.A. Morozewicz, Kyiv, 19-21 Sept., 2010, Kyiv, UA, pp. 32-33.
  27. Kostov, I. (1973), Kristall und Technik, Vol. 8, pp. 11-19. https://doi.org/10.1002/crat.19730080103
  28. Pupin, J.P. (1980), Contribs Mineral. and Petrol., Vol. 73, pp. 207-220. https://doi.org/10.1007/BF00381441
  29. Sturm, R. (2010), Microscopy: Science, Technology, Applications and Education, in Méndez-Vilas, A. and Díaz, J. (eds), Formatex Research Center, Vol. 3, Badajoz, Spain, pp. 1681-1689.
  30. Varva, G. (1993), Chem. Geol., Vol. 110, pp. 15-28. https://doi.org/10.1016/0009-2541(93)90245-E
  31. Woensdregt, C.F. (1992), Phys. Chem. Miner., Vol. 19, pp. 59-69.
English