PETROGEOCHEMICAL AND GEOCHEMICAL FEATURES OF PROTEROZOIC AND PHANEROZOIC RARE-METAL GRANITES

UDC 552.3 + 551.14

https://doi.org/10.15407/mineraljournal.38.03.067

Sheremet Ye.M. (1), Sedova E.V. (2)
(1) M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine
34, Acad. Palladina Pr., Kyiv-142, Ukraine, 03680
E-mail: EvgSheremet@yandex.ru
(2) Donetsk National Technical University (DonNTU),
2, Shibankova Square, Pokrovsk, Ukraine, 85300
PETROGEOCHEMICAL AND GEOCHEMICAL FEATURES OF PROTEROZOIC AND PHANEROZOIC RARE-METAL GRANITES
Language:
Russian
Mineralogical journal 2016, 38 (3): 67-80

Abstract: A detailed consideration of rare-metal granites in various rare-metal provinces of different ages all over the world and their comparison with rare-metal granites from the areas of tectono-magmatic activation indicates an existence of two different types of rare-metal granites, that include rare-metal granites of the "standard" geochemical type, and rare-metal Li-F granites. The first type is characterized by moderate concentrations of F, Li, Be, Sn, and W (concentrations of these elements are 1.5—2 times higher than the clarke value), moderate iron content in biotite (f = 50—70 %, Fe-Mg biotite), and low concentrations of Sr and Ba. Rare-metal-Mo, Mo-W, and W ores are usually linked to this type of granites. The rare metal granites of the second type have extremely high concentrations of F, Li, Be, Sn, W (concentrations of these elements are 10—60 times higher than the clarke value for granite), high iron content in biotite (f = 80—95 %, siderophillite, lepidomelane, protolithionite), and sharply decreased concentrations of Sr and Ba. This type of granites is typically linked to rare-metal-Sn and Sn-W mineralization. The rare-metal granites of the areas of tectono-magmatic activation of Proterozoic, Phanerozoic, and Mesozoic ages are identical, with respect to their composition, to rare-metal granites of the world. Most of the rare metal provinces in the world are confined to the continental margins along their borders with oceans. The rare-metal granites of the Phanerozoic and Mesozoic ages occur often in an extension setting that corresponds to the continental rift systems (Nigeria, West and East Africa, Cenozoic of the northwestern USA, Trans-Baikal area, etc.). Most often the rare-metal granites worldwide associate with sub-alkaline (monzonitic) granites, less often — with alkaline igneous rocks (Nigeria province). The rare-metal granites of the areas of the Proterozoic tectono-magmatic activation associate predominantly with granites rapakivi (Ukrainian and Fennoscandian Shields), rarely with monzonitic granites (Belarus, the Kola Peninsula), and sub-alkaline granites and granosyenites (Azov terrain of the Ukrainian Shield). These are not widely linked to Mo-W and Sn-W mineralization. By contrast, they are characterized by rare-metal-REE mineralization. The formation of the Li-F granites of the Phanerozoic rare-metal provinces worldwide, of the Mesozoic of the Trans-Baikal area, of the subplatformal Proterozoic of the East European craton is likely related to the depth (subasthenospheric) fluids. There are several geochemical lines of evidences in favor of this assumption, which include high iron content in biotites that indicates the sharply reducing conditions, the identity of the trace element composition of these granites irrespective of their age (from Proterozoic until now). There are, however, certain differences between the ore mineralization of granites that belong to the Proterozoic areas of tectono-magmatic activation, and Phanerozoic granites. The REE specialization of the ancient rare-metal granites is likely caused by the involvement of the REE-rich pelagic oceanic sediments into the process of magma generation in the zones of subduction. The Phanerozoic and Mesozoic rare-metal granites in the areas of tectono-magmatic activation were formed in the course of rift-related extension that resulted in inflow of mantle fluids from the deeper mantle horizons.

Keywords: Phanerozoic, Mesozoic, rare-metal granites, geochemistry, areas of tectono-magmatic activation, rare-metal provinces worldwide.

References:

  1. Velikoslavinskij, D.A., Birkis, A.P. and Bogatikov, O.A. (1978), Anortozit-rapakivi granitnaya formaciya Vostochno-Evropejskoj platformy, in Mitrofanov, F.P. (ed.), Nauka, Leningrad, 296 p.
  2. Vinogradov, A.P. (1962), Geohimiya, No 7, pp. 560-561.
  3. Batieva, I.D., Bel’kov, I.V., Vetrin, V.R., Vinogradov, A.N., Vinogradova, G.V. and Dubrovskiy, M.I. (1978), Granitoidnye formacii dokembriya severo-vostochnoj chasti Baltijskogo shchita, Nauka, Leningrad, 264 p.
  4. Zonenshajn, L.P., Kuz’min, M.I. and Moralev, V.P. (1976), Global’naya tektonika, magmatizm i metallogeniya, Nedra, Moskva, 231 p.
  5. Kovalenko, V.I. (1977), Petrologiya i geohimiya redkometal’nyh granitoidov, Nauka, Novosibirsk, 208 p.
  6. Kozlov, V.D. (1985), Geohimiya i rudonosnost’ granitoidov redkometal’nyh provincij, Nauka, Moskva, 303 p.
  7. Kuz’min, M.I. (1985), Geohimiya magmaticheskih porod fanerozojskih podvizhnyh poyasov, Nauka, Novosibirsk, 198 p.
  8. Sheremet, E.M., Kryvdik, S.G. and Sedova, E.V. (2014), Redkometal’nye granity Ukrainskogo shchita (petrologiya, geohimiya, geofizica i rudonosnost), in Ponomarenko, O.M. and Antsiferov, A.V. (eds), Noulidzh, Donetsk, Ukraine, 250 p.
  9. Sedova, E.V. and Sheremet, E.M. (2014), Nauk. pr. Donets’k. nacіonal. tekhnіch. Unіv., Ser. Gіrn.-geol., Donetsk, Vyp. 1 (20), pp. 38-48.
  10. Tauson, L.V. (1977), Geohimicheskie tipy i potencial’naya rudonosnost’ granitoidov, Nauka, Moskva, 279 p.
  11. Sheremet, E.M. and Kozlov, V.D. (1981), Petrologiya, geohimiya i rudonosnost’ granitoidov molibdenovogo poyasa Zabajkal’ya, Nauka, Novosibirsk, 132 p.
  12. Shcherba, G.N. (1968), Genezis endogennyh rudnyh mestorozhdenij, Nedra, Moskva, pp. 378-442.
  13. Burnol, L., Autran, A., Bonnici, J.P. and Geffroy, J. (1974), Acid granites and associated mineralization in the North-Western part French Central massif, Excursion guide book C, IGCP, Metallization Associated with Acid Magmatism, BRGM, Karlovy Vary, Czechoslovakia, Paris, France, No 26, pp. 116-205.
  14. Ajakaiye, D.E. (1968), Geol. Mag., Vol. 105, pp. 256-263. https://doi.org/10.1017/S0016756800052274
  15. Ajakaiye, D.E. (1973), Nature, Vol. 225, pp. 50-52. https://doi.org/10.1038/225050b0
  16. Alderton, D.H.M. and Moore, F. (1981), Miner. Mag., Vol. 244 No 335, pp. 354-356. https://doi.org/10.1180/minmag.1981.044.335.18
  17. Banewitz, P. (1978), Metallization associated with acid magmatism, Vol. 3, pp. 159-167.
  18. Bowden, P. and Jones, J.A. (1978), Metallization associated with acid magmatism, Vol. 3, pp. 179-190.
  19. Burol, L. (1978), Metallization associated with acid magmatism, Vol. 3, pp. 191-203.
  20. Flinter, B.H., Hesp, W.R. and Rigby, D. (1972), Econ. Geol., Vol. 67 No 8, pp. 1241-1268. https://doi.org/10.2113/gsecongeo.67.8.1241
  21. Groves, D.J. (1972), Econ. Geol., Vol. 67 No 4, pp. 445-457. https://doi.org/10.2113/gsecongeo.67.4.445
  22. Groves, D.J. (1978), Metallization associated with acid magmatism, Vol. 3, pp. 205-215.
  23. Haapala, J. and Ojanperä, P. (1972), Geol. Surv. Finland. Bull., Vol. 259, pp. 5-22.
  24. Haapala, J. (1974), Metallization associated with acid magmatism, Vol. 7, pp. 159-169.
  25. Haapala, J. (1978), Metallization associated with acid magmatism, Vol. 3, pp. 217-225.
  26. Hall, A. (1971), Proc. Geol. Assoc., Vol. 82, pp. 209-230. https://doi.org/10.1016/S0016-7878(71)80003-2
  27. Hall, A. (1973), Bull. Soc. geol. France, Vol. 5 No 3-4, pp. 229-238. https://doi.org/10.2113/gssgfbull.S7-XV.3-4.229
  28. Hawkes, J.R. (1974), Bull. Geol. Surv. Great Britain, Vol. 38 No 4, pp. 1125-1146.
  29. Hawkes, J.R., Harding, R.R. and Darbyshire, D.P.F. (1975), Bull. Geol. Surv. Great Britain, No 52, pp. 27-42.
  30. Hesp, W.R. and Rigby, D. (1975), J. Geochem. Explor., Vol. 4 No 3, pp. 331-347. https://doi.org/10.1016/0375-6742(75)90014-X
  31. Imeokparia, Ebo Gab (1980), Chem. Geol., Vol. 28, pp. 69-77. https://doi.org/10.1016/0009-2541(80)90036-4
  32. Solomon, M., Groves, D.J. and Klominsky, J. (1972), Proc. Austral. Inst. Mining and Met., No 242, pp. 9-24.
  33. Stone, M. (1975), Proc. Geol. Assoc., Vol. 86 No 2, pp. 155-170. https://doi.org/10.1016/S0016-7878(75)80098-8
  34. Taylor, R.G. (1978), Metallization associated with acid magmatism, Vol. 3, pp. 43-55.
  35. Tisсhendorf, G., Friese, G. and Shindler, R. (1969), Geologie, Vol. 18 No 9, pp. 384-399, 1024-1044.
  36. Tisсhendorf, G., Shust, F. and Lange, H. (1978), Metallization associated with acid magmatism, Vol. 3, pp. 123-137.
  37. White, A.J.R., Chappel, B.W. and Cleary, I.R. (1974), Pasif. Geol., No 8, pp. 159-171.
  38. Wright, J.B. (1969), Tectonophysics, Vol. 6, pp. 301-310. https://doi.org/10.1016/0040-1951(68)90046-2
English