UDC 549.514.81 : 548.4 : 549.514.51 (477.4)

I.N. Gerasimets, H.O. Kulchytska, E.E. Grechanovskaya
M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine
34, Acad. Palladin Ave., Kyiv, Ukraine, 03142
Language: Ukrainian
Mineralogical journal 2018, 40 (2): 17-26


Abstract: In the Velyka Vyska syenite Massif zircon is closely associated with apatite and REE-minerals britholite, allanite, chevkinite that increased the interest of this mineral. The zircon crystals were investigated by of X-ray diffraction (XRD) in order to compare them with the zircons of the Azov and Yastrubetsky syenite Massifs, which also contains REE are known. A comparison of the CSR parameter (coherent scattering region) of the zircons showed that the degree of structural homogeneity of the crystals from the Velyka Vyska syenite Massif is similar as in the minerals from the Yastrubetsky Massif, and smaller that in those from the Azov Massif. However, the content of U + Th is similar to the latter and corresponds to the lowest stage of irradiation. On almost all diffractograms a characteristic feature of the investigated zircon is the presence of the quartz reflex in the range of 2θ = 26.5—27.5 and in the region 2θ = 16—25, a diffuse X-ray scattering that is usually observed for amorphous SiO2. At present time in zircons from the Azov and Yastrubetsky Massifs the quartz reflexes were not detected. The low content of actinides in the investigated zircon does not give grounds to assume that quartz was formed as a result of the decay of radiation-damaged minerals into the constituent oxides, although amorphous SiO2 and crystalline ZrO2 can form during annealing of metamict zircon. The reason for the low degree of crystallinity of the zircon is seen in the crystallization conditions of the Velyka Vyska syenites. The crystallization of zircon at rapid cooling of the melt led to the capture of "nonformular" components and their subsequent displacement into newly formed internal cracks and outside the crystal in the form of amorphous silicate. Nanocrystals of quartz were formed in the filled cracks of zircon crystals as a result of partial crystallization of amorphous substance.

Keywords: zircon, rare-metal mineralization, X-ray diffraction analysis, coherent scattering region, amorphous substance.


  1. Vyshnevskyy, O.A., Kvasnytsya, I.V., Shumlyanskyy, L.V. and Gurnenko, I.V. (2015), Zap. Ukr. Mineral. tov-va, Vol. 12, Kyiv, UA, pp. 88-102.
  2. Votyakov, S.L., Shchapova, Yu.V. and Khiller, V.V. (2011), Crystal chemistry and physics of radiation and thermal effects in some U-Th-bearing minerals as a basis for the chemical microprobe age dating, Institute of Geol. and Geochem. UB RAS, Ekaterinburg, RU, 340 p.
  3. Godovikov, A.A (1973), Mineralogy, Nedra, Moscow, RU, 647 p.
  4. Kalinichenko, E.A., Brik, A.B., Stepanyuk, L.M. and Kalinichenko, A.M. (2012), Mineral. Journ. (Ukraine), Vol. 34, No 3, Kyiv, UA, pp. 34-44.
  5. Kvasnytsya, V.M., Vyshnevskyi, O.A., Kvasnytsya, I.V. and Gurnenko, I.O. (2016), Mineral. Journ. (Ukraine), Vol. 38, No. 3, Kyiv, UA, pp. 9-23.
  6. Kryvdik, S.G. and Bezsmolova, N.V. (2011), Geol. Journ., No. 3, Kyiv, UA, pp. 39-45.
  7. Krochuk, V.M., Legkova, H.V., Galaburda, Yu.A., Orsa, V.I. and Usova, L.V. (1989), Mineral. Journ. (Ukraine), Vol. 11, No. 6, Kyiv, UA, pp. 18-29.
  8. Levashova, E.V., Skublov, S.G., Ly, Kh.H., Kryvdik, S.G., Voznyak, D.K., Kulchytska, H.O. and Alekseev, V.I. (2016), Geology of ore deposits, Vol. 58, No. 3, Nauka, Moscow, RU, pp. 267-291.
  9. Lupashko, T., Ilchenko, K., Grechanovskaya, E., Voznyak, D., Kryvdik, S. and Kulchytska, H. (2012), Mineral. zb., No. 62, Vyp. 2, Lviv, UA, pp. 158-172.
  10. Lupashko, T.N., Ilchenko, E.A., Kryvdik, S.G., Levashova, E.V. and Skublov, S.G. (2014), Mineral. Journ. (Ukraine), Vol. 36, No. 4, Kyiv, UA, pp. 20-38.
  11. Sheremet, E.M., Melnikov, V.S., Strekozov, S.N., Kozar, N.A., Voznyak, D.K., Kulchytska, H.O., Kryvdik, S.G., Borodynya, B.V., Volkova, T.P., Sedova, E.V., Omelchenko, A.A., Nikolaev, I.Yu., Nikolaev, Yu.I., Setaya, L.D., Agarkova, N.G., Grechanovskaya, E.E., Foshchiy, N.V. and Ekaterinenko, V.N. (2012), The Azov rare-earth deposit of the Azov Sea region megablock of Ukrainian Shield (geology, mineralogy, geochemistry, genesis, ores, integrated exploration criteria, problems of exploitation), Noulidzh, Donetsk, UA, 374 p.
  12. Anderson, Al.J., Wirth, R. and Thomas, R. (2008), Canad. Mineral., Vol. 46, pp. 1-18.
  13. Capitani, G.C., Leroux, H., Doukhan, J.C., Ríos, S., Zhang, M. and Salje, E.K.H. (2000), Phys. and Chem. Miner., Vol. 27, pp. 545-556.
  14. Ewing, R.C., Meldrum, A., Wang, LuMin, Weber, W.J., and Corrales, L.René (2003), Revs Miner. and Geochem., Vol. 53, pp. 387-425.
  15. Katayama, I. and Maruyama, S. (2009), J. Geol. Soc., Vol. 166, pp. 783-796.
  16. Kerrich, R. and King, R. (1993), Canad. J. Earth Sci., Vol. 30, pp. 2334-2351.
  17. Liu, J., Ye, K., Maruyama, S., Cong, B. and Fan, H. (2011), J. Geol., Vol. 109, No. 4, pp. 523-535.
  18. Massonne, H.-J. and Nasdala, L. (2003), Amer. Miner., Vol. 88, pp. 883-889.
  19. Murakami, T., Chakoumakos, B.C., Ewing, R.C., Lumpkin, G.R. and Weber, W.J. (1991), Amer. Miner., Vol. 76, pp. 1510-1532.
  20. Spandler, C., Hermann, J. and Rubatto, D. (2004), Amer. Miner., Vol. 89, pp. 1795-1806.
  21. Ye, K., Liou, J.-Bo, Cong, B. and Maruyama, S. (2001), Amer. Miner., Vol. 86, pp. 1151-1155.
  22. Zhang, M., Salje, E.K.H., Capitani, G.C., Leroux, H., Clark, A.M., Schlüter, J. and Ewing, R.C. (2000), J. Phys.: Condensed Matter, Vol. 12, pp. 3131-3148.