Isomorphic substitutions in apatites from igneous rocks of the Chernigiv fault zone of the Azov block of the Ukrainian shield using NMR and IRS data
https://doi.org/10.15407/mineraljournal.40.03.065
UDC 548.32 : 549.753.1 : 543.429.23
O.А. Kalinichenko, А.B. Brik, K.O. Ilchenko, А.М. Kalinichenko,, T.G. Kalinichenko
M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine
34, Acad. Palladin Ave., Kyiv, Ukraine, 03142
E-mail: mail7comp@gmail.com, abrik.igmr@gmail.com
Isomorphic substitutions in apatites from igneous rocks of the Chernigiv fault zone of the Azov block of the Ukrainian shield using NMR and IRS data
Language: Russian
Mineralogical journal 2018, 40 (3): 65-84
Abstract: Fluorapatites (FAp) from syenites (FAps) and carbonatites with dolomite (FApcd) and pyroxene admixtures (FApc) of the Chernigov fault zone of the Priazovsky block of the Ukrainiane Shield were investigated by nuclear magnetic resonance (NMR) 1Н, 19F and 31Р, Fourier transform infrared spectroscopy and, FAps and FApc, - by X-ray fluorescence. The number of peculiarities of structure and F → OH isomorphism of studied FAp was found out. OH-groups, most of which are "isolated" in the F environment, H2Ostr molecules in structure vacancies, CO3-groups, mainly, of type B, impurities of REE, Sr, Mn and Fe, and, possibly, Fx ions out of channels (≤0.02 apfu) are incorporated in structure of all samples. Investigated apatites differ in contents and, partly, in the composition of isomorphous substitutions. Water inclusions are present in apatites from carbonatites, OH∙∙∙Cl clusters – in FAps and FApc. FApcd has the highest content of different water forms (0.33 wt % of OH-groups, 0.07 wt % of each H2Ostr and water in gas-liquid inclusions by 1Н NMR data) and СО3-groups. FAps and FApc have the lower content of OH- and CO3-groups and H2Ostr molecules. Comparison of obtained data showed that some of OH-groups and H2Ostr molecules were not observed in 1Н NMR spectra, especially, FApcd and FAps, owing to presence of paramagnetic impurities of Mn, some REE and, possibly, Fe in investigated samples. The FApc structure with the lowest content of structural defects is the most ordered. Researched apatites are assumed to crystallize at relatively high PT conditions.
Keyword: fluorapatite, isomorphism, nuclear magnetic resonance, infrared spectroscopy.
- References:
- Batsanov, S.S. (2000), Strukturnaya khimiya, Dialog-Moscow Gos. Univ. Press, Moscow, RU, 292 p.
- Brik, А.B., Frank-Kamenetskaya, О.V., Dubok, В.А., Kalinichenko, E.A., Kuzmina, M.A., Zorina, M.L., Dudchenko, N.A., Kalinichenko, A.M. and Bagmut, N.N. (2013), Mineral. Journ. (Ukraine), Vol. 35, No. 3, Kyiv, UA, pp. 3-10.
- Dubyna, O.V., Kryvdik, S.G. and Sobolev, V.B. (2012), Mineral. Journ. (Ukraine), Vol. 34, No. 3, Kyiv, UA, pp. 22-33.
- Gunther, H. (1980), NMR Spectroscopy: An Introduction, John Wiley & Sons, Chichester, New York, Brisbane, Toronto.
- Kalinichenko, A.M., Buchinskaya, N.I., Bagmut, N.N. and Proshko, V.Ya. (1987), Mineral. Journ. (Ukraine), Vol. 9, No. 3, Kyiv, UA, pp. 45-50.
- Kalinichenko, E.А., Brik, А.B., Nikolaev, А.М., Kalinichenko, А.М., Frank-Kamenetskaya, О.V., Dubok, O.V., Bagmut, N.N., Kuzmina, М.А. and Kolesnikov, I.Е. (2015), Mineral. Journ. (Ukraine), Vol. 37, No. 4, Kyiv, UA, pp. 21-35.
- Kalinichenko, E.А., Brik, А.B., Nikolaev, А.М., Kalinichenko, А.М., Frank-Kamenetskaya, О.V., Dubok, O.V., Bagmut, N.N., Kuzmina, М.А. and Kolesnikov, I.Е. (2016), Mineral. Journ. (Ukraine), Vol. 38, No. 1, Kyiv, UA, pp. 15-32.
- Knubovets, R.G. and Gabuda, S.P. (1975), Apatite physics, Nauka, Novosibirsk, RU, pp. 100-112.
- Yukhnevich, H.V. (1973), Infrakrasnaya spektroskopiya vody, Nauka, Moscow, RU, 208 p.
- Commodi, P., Liu, Y., Stoppa, F. and Woolley, A.R. (1999) Miner. Magazine, Vol. 63, No. 5, pp. 661-673.
- Fleet, M.E. (2015), Carbonated hydroxyapatite. Materials, Synthesis and Application, CRC Press, Taylor & Francis Group, Boca Raton, USA, UK, 278 p.
- Freund, F. and Knobel, R.M. (1977), J. Chem. Soc., Dalton Trans., No. 11, pp. 1136-1140. https://doi.org/10.1039/dt9770001136
- Hughes, J.M., Cameron, M., Crowley, K.D. and Mariano, A.N. (1989), Amer. Miner., Vol. 74, pp. 870-876.
- Krajewski, A., Mazzocchi, M., Buldini, P.L., Ravaglioli, A., Tinti, A., Taddei, P. and Fagnano, C. (2005), J. Molecul. Struct., Vol. 744, pp. 221-228. https://doi.org/10.1016/j.molstruc.2004.10.044
- Libowitzky, E. and Rossman, G.R. (1996), Phys. Chem. Mineral., Vol. 23, No. 6, pp. 319-327.
- Maiti, G.C. and Freund, F. (1981), J. Inorg. Nucl. Chem., Vol. 43, No. 11, pp. 2633-2637. https://doi.org/10.1016/0022-1902(81)80589-1
- Mason, H.E., McCubbin, F.M., Smirnov, A. and Phillips, B.L. (2009), Amer. Miner., Vol. 94, No. 4, pp. 507-516.
- McCubbin, F.M., Mason, H.E., Park, H., Phillips, B.L., Parise, J.B., Nekvasil, H. and Lindsley, D.H. (2008), Amer. Miner., Vol. 93, No. 1, pp. 210-216.
- Pan, Y. and Fleet, M.E. (2002), Rev. Mineral. Geochem., Vol. 48, No. 1, pp. 13-49. https://doi.org/10.2138/rmg.2002.48.2
- Rintoul, L. Wentrup-Byrne, E., Suzuki, S. and Grondahl, L. (2007), J. Mater. Sci. Mater. Med., Vol. 18, No. 9, pp. 1701-1710. https://doi.org/10.1007/s10856-007-3052-3
- Tacker, R.C. (2004), Amer. Miner., Vol. 89, No. 10, pp. 1411-1421, https://doi.org/10.2138/am-2004-1008
- Tacker, R.C. (2008), Amer. Miner., Vol. 93, No. 1, pp. 168-176, https://doi.org/10.2138/am.2008.2551
- Tonsuaadu, K., Gross, K.A., Pluduma, L. and Veiderma, M. (2011), J. Therm. Anal. Calorim., Vol. 110, No. 2, pp. 647-659, https://doi.org/10.1007/s10973-011-1877-y
- Vyalikh, A., Simon, P., Rosseeva, E., Buder, Ja., Scheler, U. and Kniep, R. (2015), Sci. Rep., Vol. 5, Article number 15797, pp. 1-10, https://doi.org/10.1038/srep15797
- Yi, H., Balan, E., Gervais, C., Segalen, L., Fayon, F., Roche, D., Person, A., Morin, G., Guillaumet, M., Blanchard, M., Lazzeri, M. and Babonneau, F. (2013), Amer. Miner., Vol. 98, No. 5-6, pp. 1066-1069, https://doi.org/10.2138/am.2013.4445