N.G. Yurchenko, M.M. Taran. OPTICAL SPECTROSCOPIC AND COLORIMETRIC STUDY OF PYROXENES FROM FENITIZED ROCKS OF THE CHERNIHIVKA CARBONATITE MASSIF OF THE AZOV REGION

https://doi.org/10.15407/mineraljournal.40.04.053
UDC 549.642.2/.4
N.G. Yurchenko, M.M. Taran
M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine
34, Acad. Palladin Ave., Kyiv, Ukraine, 03142
Е-mail: nadysya88@gmail.com, m_taran@hotmail.com
Language: English
Mineralogical journal 2018, 40 (4): 53-64
OPTICAL SPECTROSCOPIC AND COLORIMETRIC STUDY OF PYROXENES FROM FENITIZED ROCKS OF THE CHERNIHIVKA CARBONATITE MASSIF OF THE AZOV REGION
Abstract: At exploration of carbonatite complexes the main attention is usually paid to investigation of the carbonatites themselves and various silicate magmatic rocks related to them, whilst much less attention is paid to the rocks of fenitized halos, which always accompany the carbonatite complexes being a powerful searching criterion. To expand instruments of forecasting and searching of carbonatites within the Ukrainian Shield, the influence of alkaline fenitizing fluids on optical spectroscopic parameters and coloration of rock-forming minerals was investigated. In this work the results of optical spectroscopy and colorimetric investigation of pyroxenes from metasomatically altered clinopyroxenites, crystalline schists, pyroxene containing migmatites of granite, tonalite and granosyenite compositions, syenites and alkaline syenites of fenitized halo of the northern part of Chernihivka carbonatite massif and its gneiss-migmatite frame host rocks are presented. It was found that spectroscopic features, color and pleochroism of the pyroxenes are caused by presence and ratio of different-valence iron ions, Fe2+ and Fe3+, in the crystal structure, that causes appearance as crystal field absorption bands (bands of electronic dd-transitions), as the bands of intervalence charge-transfer Fe2+ ® Fe3+. It is revealed that in the pyroxenes studied the M2 structural site is nearly completely filled by calcium and sodium ions, whereas Fe2+ are predominantly concentrated in the structural cationic positions M1. Nevertheless, even relatively low fraction of Fe2+ (М2)-ions significantly influences on the character of optical absorption in the near infrared range. By colorimetric investigations of grains of pyroxene from various rocks of the halo of fenitization the different character of coloration and its saturation, caused by different iron content and different degree of oxidation, is established.
Keywords: Ukrainian Shield, Chernihivka carbonatite massif, fenite halo, pyroxenes, optical spectroscopy, colorimetric study.
References:

  1. Glevasskiy, E.B. and Kryvdik, S.G. (1981), Dokembriyskiy karbonatitovyi kompleks Priazovya, Nauk. dumka, Kyiv, UA, 228 p.
  2. Gurevich, M.M. (1950), Tsvet i ego izmerenie, Izd-vo AN SSSR, Moscow, RU, 283 p.
  3. Judd, D. and Wyszecki, G. (1978), Color in Business, Science, and Industry, Mir, Moscow, RU, 592 p.
  4. Matsyuk, S.S., Platonov, A.N. and Khomenko V.M. (1985), Opticheskie spektry i okraska mantijnyh mineralov v kimberlitah, Nauk. dumka, Kyiv, UA, 248 p.
  5. Nikanorova, Yu.Ye., Lazaryeva, I.I., Shnyukov, S.Ye. and Kovtun, O.V. (2015), Mineralni resursy Ukrayiny, No. 1, Kyiv, UA, pp. 20-26.
  6. Platonov, A.N., Taran, M.N. and Balitsky, V.S. (1984), Priroda okraski samotsvetov, Nedra, Moscow, RU, 196 p.
  7. Rusakov, N.F. and Kravchenko, G.L. (1986), Geological journal, Vol. 46, No. 4, Kyiv, UA, pp. 112-118.
  8. Taran, M., Yurchenko, N. and Shnyukov, S. (2014), Mineral. zbirnyk, No. 64, Iss. 2, Lviv, UA, pp. 95-103.
  9. Khomenko, V.M. (2015), Mineral. Journ. (Ukraine), Vol. 37, No. 3, Kyiv, UA, pp. 15-27.
  10. Khomenko, V.M. and Platonov, A.N. (1987), Porodoobrazuyushchie pirokseny: opticheskie spektry, okraska i pleokhroizm, Nauk. dumka, Kyiv, UA, 214 p.
  11. Shestopalov, D.I., Golubeva, L.F., Taran, M.N. and Khomenko, V.M. (1991), Astromiomicheskiy vestnik, Vol. 25, No. 4, pp. 442-452.
  12. Shcherbak, N.P., Zlobenko, V.G., Zhukov, G.V., Kotlovskaya, F.I., Polevaya, N.I., Komlev, L.V., Kovalenko, N.K., Nosok, G.M. and Pochtarenko, V.I. (1978), Katalog izotopnykh dat porod Ukrainskogo shchita, Nauk. dumka, Kyiv, UA, 224 p.
  13. Shcherbakov, I.B. (2005), Petrology of the Ukrainian Shield, ZUKTS press, Lviv, UA, 366 p.
  14. Yurchenko, N.G., Shnyukov, S.Ye. and Pavlov, G.G. (2015), Mineral. zbirnyk, No. 65, Iss. 1, Lviv, UA, pp. 84-94.
  15. Amthauer, G., and Rossman, G.R. (1984), Phys. Chem. Minerals, Vol. 11 (2), pp. 37-51. https://doi.org/10.1007/BF00309374
  16. Burns, R.G. (1993), Mineralogical application of crystal field theory, Cambr. Univ. Press, Cambridge, 550 p. https://doi.org/10.1017/CBO9780511524899
  17. Cameron, M., Shigeho, S., Prewitt, C.T. and Papike, J.J. (1973), Amer. Miner., Vol. 58 (7-8), pp. 594-618.
  18. Cloutis, E.A. (2002), J. Geophys. Res., Vol. 107 (E6), p. 5039. https://doi.org/10.1029/2001JE001590
  19. Klima, R.L., Pieters, C.M. and Dyar, M.D. (2007), Meteoritics and Planet. Sci., Vol. 42, pp. 235-253. https://doi.org/10.1111/j.1945-5100.2007.tb00230.x
  20. Langer, K. and Khomenko, V.M. (1999), Contribs Mineral. and Petrol., Vol. 137, pp. 220-223. https://doi.org/10.1007/s004100050547
  21. Marfunin, A.S. (1979), Physics of Minerals and Inorganic Materials. An Introduction, Springer Verlag, Berlin, Heidelberg, N-Y, 340 p. https://doi.org/10.1007/978-3-642-67044-2
  22. Rossman, G.R. (1980), Pyroxene spectroscopy, in Prewitt, C.T. (ed.), Pyroxenes, Revs Mineral. and Geochem., Vol. 7, pp. 93-115. https://doi.org/10.1515/9781501508257-007
  23. Rossman, G.R. (1988), Spectroscopic Methods in Mineralogy and Geology, in Hawthorne, F.C. (ed.), Revs. Mineral., Vol. 18, pp. 207-254.
  24. Skogby, H., Hålenius, U., Kristiansson, P. and Ohashi, H. (2006), Amer. Miner., Vol. 91 (11-12), pp. 1794-1801. https://doi.org/10.2138/am.2006.2154
  25. Smith, G. (1978a), Phys. Chem. Minerals, Vol. 3 (4), pp. 343-373. https://doi.org/10.1007/BF00311847
  26. Smith, G. (1978b), Phys. Chem. Minerals, Vol. 3 (4), pp. 375-383. https://doi.org/10.1007/BF00311848
  27. Straub, D.W., Burns, R.G. and Pratt, S.F. (1991), Geophys. Res., Vol. 96, pp. 18819-30. https://doi.org/10.1029/91JE01893
  28. Taran, M.N., Ohashi, H., Langer, K. and Vishnevskyy, A.A. (2011), Phys. Chem. Minerals, Vol. 38 (5), pp. 345-356. https://doi.org/10.1007/s00269-010-0408-x
  29. Taran, M.N. and Langer, K. (2001), Phys. Chem. Minerals, Vol. 28 (3), pp. 199-210. https://doi.org/10.1007/s002690000148
  30. Taran, M.N., Ohashi, H. and Koch-Müller, M. (2008), Phys. Chem. Minerals, Vol. 35 (3), pp. 117-127. https://doi.org/10.1007/s00269-007-0202-6
English