Е.V. Levashova. GEOCHEMISTRY OF MELT INCLUSIONS IN ZIRCON FROM AZOV Zr-REE DEPOSIT (UKRAINIAN SHIELD)

English

https://doi.org/10.15407/mineraljournal.41.02.045

UDC 550.42+549.514.81

Е.V. Levashova 1, http://www.ipgg.ru/ru/staff/levashova-ev

D.К. Voznyak 2, https://orcid.org/0000-0002-6124-2033

S.G. Skublov 1, 3, https://www.researchgate.net/profile/S_Skublov

T.V. Kaulina 4, https://www.researchgate.net/profile/T_Kaulina

H.O. Kulchytska 2, http://orcid.org/0000-0002-7206-4797

О.L. Galankina 1https://www.researchgate.net/profile/Olga_Galankina

1 Institute of Precambrian Geology and Geochronology RAS

2, Makarova Emb., St. Petersburg, Russia, 199034

E-mail: skublov@yandex.ru

2 M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine

E-mail: dkvoznyak@ukr.net

34, Acad. Palladin Ave., Kyiv, Ukraine, 03142

3 Saint Petersburg Mining University

2, Vasilevskiy island, 21 Line, St. Petersburg, Russia, 199106

4 Gelogical Institute Kola branch RAS

14, Fersmana Str., Apatity, Russia, 184209

GEOCHEMISTRY OF MELT INCLUSIONS IN ZIRCON FROM AZOV Zr-REE DEPOSIT (UKRAINIAN SHIELD)

Language: Russian

Mineralogical journal 2019, 41 (2): 45-61

Abstract:

A local (ion microprobe) study of the geochemistry of primary melt inclusions in zircon from the Azov Zr-REE deposit was carried out for the first time. Among them there are recrystallized inclusions that are predominant and cracked inclusions of glass. The latter were formed under the influence on the rock by the flow of CO2-fluids that characterizes by high RT-parameters. The melt inclusions in zircon can be classified into two groups relative to time of their capture by the crystal, that are different in content of the major, trace and rare earth elements. The early inclusions are acid and late inclusions are basic in composition. Early inclusions of the acid composition contain much less Fe, Ca, REE, Y, Zr, P, Th by compared with late inclusions. The minimal content of trace elements is established for early inclusions of natural quenching, which have lost their tightness under the influence of flows of high-temperature CO2-fluids. The composition of the recrystallized inclusions corresponds to the composition of potassium feldspar with minor admixtures of albite and femic mineral. Enrichment of late melt inclusions with fluorine, their oversaturation with REE, Zr and Y reflects the processes of liquation, which led to the separation of the syenite melt into two immiscible liquids - rich in iron, incompatible elements and fluorine, and rich in silica. The zircon / melt distribution coefficients Kd for rare-earth elements are determined for both groups of melt inclusions. The Kd values for zircon from the Azov deposit are significantly (ten to hundred times) lower than published data for zircon from magmatic acid rocks. It was revealed that at the last stages of formation of the Azov deposit, when the syenite melt being oversaturated with incompatible elements (REE, Zr, Y), zircon follows the composition of the melt - REE spectra of zircon and syngenetic primary glass inclusion are similar and differs only in their content.

Keywords: zircon, melt inclusions, Azov deposit, rare earth elements, Zr-REE deposits.

References:

  1. Bakumenko, I.T. (1975), Magmatogenic crystallization: melt inclusion data, Nauka, Novosibirsk, RU, pp. 33-54.
  2. Voznyak, D.K. (2007), Microinclusions and reconstruction of the conditions of the endogenous mineral formation. Nauk. dumka, Kyiv, UA, 280 p.
  3. Voznyak, D.K., Melnikov, V.S., Pavlyshyn, V.I. and Kulchytska, H.O. (2000), Geology and Magmatism of Precambrian of the Ukranian Shield, M.P. Semenenko IGMOF of the NAS of Ukraine, Kyiv, UA, pp. 140-143.
  4. Voznyak, D.K., Sobolev, V.B., Kulchytska, H.O., Belskyi, V.M. and Galaburda, Yu.A. (2012), Nac. akad. nauk Ukr., No. 3, Kyiv, UA, pp. 111-117.
  5. Volkova, T.P., Strekozov, S.N., Vasil’chenko, V.V. and Bagriy, I.D. (2001), Geol. zhurn., No. 4, Kyiv, UA, pp. 102-109.
  6. Kryvdik, S.G., Zagnitko, V.N. and Strekozov, S.N. (2000), Geochemistry of Magmatic Rocks: collection of articles, Moscow, RU, pp. 83-85.
  7. Melnikov, V.S. and Voznyak, D.K. (2008), Materyaly XXV Vseros. sem. s uchastyem stran SNG St. Petersburg, May, 23-26, St. Petersburg, RU, pp. 108-110.
  8. Melnikov, V.S., Voznyak, D.K., Grechanovskaya, E.E., Gursky, D.S., Kulchytska, H.O. and Strekozov, S.N. (2000), Mineral. Journ. (Ukraine), Vol. 22, No. 1, Kyiv, UA, pp. 42-61.
  9. Melnikov, V.S. and Grechanovskaya, E.E. (2010), Mineral. Journ. (Ukraine), Vol. 32, No. 3. Kyiv, UA, pp. 11-21.
  10. Melnikov, V.S., Kozar, N.A. and Strekozov, S.N. (2007), Materialy dokl. Mezhdunar. (stran SNG) sov., Donetsk, 10-16 sent. 2007, Kyiv, UA, pp. 177-182.
  11. Panov, B.S. and Panov, Yu.B. (2000), Mineral. Journ. (Ukraine), Vol. 22, No. 1, Kyiv, UA, pp. 81-86.
  12. Redder, Je. (1983), The evolution of igneous rocks, in Joder, X. (ed.), Mir, Moscow, RU, pp. 24-66.
  13. Skublov, S.G. (2005), Geochemistry of Rare-Earth Elements in the Rock-Forming Metamorphic Minerals, Nauka, St. Petersburg: RU, 147 p.
  14. Skublov, S.G. and Li, X.-H. (2016), Zapiski Gornogo Instituta, Vol. 222, St. Petersburg, RU, pp. 798-802.
  15. Suk, N.I. (2017), Liquid immiscibility in the alkaline magmatic systems, Universitetskaya Kniga, Moscow, RU, 238 p.
  16. Chupin, V.P., Vetrin, V.R., Rodionov, N.V., Matukov, D.I., Berezhnaya, N.G., Sergeev, S.A., Mitrofanov, F.P. and Smirnov, Yu.P. (2006), Doklady Earth Sci., Vol. 406, No. 4, RU, pp. 533-537. https://doi.org/10.1134/S1028334X06010363
  17. Chupin, V.P., Sorokinа, G.A. and Vetrin, V.R. (2007), Vestnik of MGTU, Vol. 10, No. 1, Murmansk, RU, pp. 80-87.
  18. Sheremet, E.M., Melnikov, V.S., Strekozov, S.N., Kozar, N.A., Voznyak, D.K., Kulchytska, H.O., Kryvdik, S.G., Borodynya, B.V., Volkova, T.P., Sedova, E.V., Omelchenko, A.A., Nikolaev, I.Yu., Nikolaev, Yu.I., Setaya, L.D., Agarkova, N.G., Grechanovskaya, E.E., Foshchiy, N.V. and Ekaterinenko, V.N. (2012), The Azov rare-earth deposit of the Azov Sea region megablock of Ukrainian Shield (geology, mineralogy, geochemistry, genesis, ores, integrated exploration criteria, problems of exploitation), Noulidzh press, Donetsk, UA, 374 p.
  19. Scherbakov, I.B. (2005), Petrology of the Ukrainian Shield, ZUKC press, Lviv, UA, 366 p.
  20. Andreeva, I.A. (2016), Petrology, Vol. 24, No. 5, Moscow, RU, pp. 462-476. https://doi.org/10.1134/S0869591116050027
  21. Aranovich, L.Ya., Prokofiev, V.Yu., Pertsev, A.N., Bortnikov, N.S., Ageeva, O.A., Bel’tenev, V.E., Borisovsky, S.E. and Simakin, S.G. (2015), Doklady Earth Sci., Vol. 460, No. 2, RU, pp. 174-178. https://doi.org/10.1134/S1028334X15020166
  22. Chupin, S.V., Chupin, V.P., Barton, J.M. and Barton, E.S. (1998), Europ. J. Mineral., Vol. 10, pp. 1241-1251. https://doi.org/10.1127/ejm/10/6/1241
  23. Chupin, V.P., Vetrin, V.R., Rodionov, N.V., Matukov, D.I., Berezhnaya, N.G., Sergeev, S.A., Mitrofanov, F.P. and Smirnov, Yu.P. (2006), Doklady Earth Sci., Vol. 406, No. 1, RU, pp. 153-157. https://doi.org/10.1134/S1028334X06010363
  24. Claiborne, L.L., Miller, C.F., Gualda, G.A., Carley, T.L., Covey, A.K., Wooden, J.L. and Fleming, M.A. (2017), Microstructural Geochronology: Planetary Records Down to Atom Scale. Geophysical Monograph, 232, pp. 3-33.
  25. Fedotova, A.A., Bibikova, E.V. and Simakin, S.G. (2008), Geochemistry Intern., Vol. 46, No. 9, RU, pp. 912-927. https://doi.org/10.1134/S001670290809005X
  26. Frezzotti, M.L. (2001), Lithos, Vol. 55, pp. 273-299. https://doi.org/10.1016/S0024-4937(00)00048-7
  27. Levashova, E.V., Skublov, S.G., Alekseev, V.I., Li, X.H., Kryvdik, S.G., Voznyak, D.K. and Kulchitskaya, A.A. (2016), Geology of Ore Deposits, Vol. 58, No. 3, pp. 239-262. https://doi.org/10.1134/S1075701516030065
  28. Luo, Y. and Ayers, J.C. (2009), Geochim. et Cosmochim. acta, Vol. 73, pp. 3656-3679. https://doi.org/10.1016/j.gca.2009.03.027
  29. McDonough, W.F. and Sun, S.-s. (1995), Chem. Geol., Vol. 120, pp. 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
  30. Nardi, L.V.S., Formoso, M.L.L., Müller, I.F., Fontana, E., Jarvis, K. and Lamarão, C. (2013), Chem. Geol., Vol. 335, pp. 1-7. https://doi.org/10.1016/j.chemgeo.2012.10.043
  31. Portnyagin, M., Hoernle, K., Plechov, P., Mironov, N. and Khubunaya, S. (2007), Earth Planet. Sci. Lett., Vol. 255, pp. 53-69. https://doi.org/10.1016/j.epsl.2006.12.005
  32. Sobolev, A.V. (1996), Petrology, Vol. 4, No. 3, Moscow, RU, pp. 209-220.
  33. Suk, N.I. (2012), Petrology, Vol. 20, No. 2, Moscow, RU, pp. 138-146. https://doi.org/10.1134/S0869591112020075
  34. Thomas, J.B., Bodnar, R.J., Shimizu, N. and Chesner, C.A. (2003), Rev. Miner. Geochem., Vol. 53, pp. 63-87. https://doi.org/10.2113/0530063
  35. Thomas, J.B., Bodnar, R.J., Shimizu, N. and Sinha, A.K. (2002), Geochim. et cosmochim. acta, Vol. 66, pp. 2887-2901. https://doi.org/10.1016/S0016-7037(02)00881-5
  36. Voznyak, D.K., Chernysh, D.S., Melnikov, V.S. and Ostapenko, S.S. (2013), Mineralogia, Vol. 44, No. 3-4, Miass, RU, pp. 125-131. https://doi.org/10.2478/mipo-2013-0009
  37. Voznyak, D., Kulchytska, H., Vyshnevskyi, O. and Ostapenko, S. (2010), Sci. conf. dedicated to the memory of J.A. Morozewich, 19-21 Sept., (2010), M.P. Semenenko IGMOF of NAS of Ukraine, Kyiv, UA, pp. 67-68.
  38. Voznyak, D.K., Melnikov, V.S., Chernysh, D.S. and Ostapenko, S.S. (2010), III Biennial Conf. of Asian Current Research on Fluid Inclusions (ACROFI III) and 14th Intern. Conf. on Termobarogeochemistry (TBG XIV), Novosibirsk, 15-20 Sept. 2010, Russian Acad. Sci., Siberian Branch, V.S. Sobolev Inst. of Geology and Mineralogy, Publ. House of SB RAS, Novosibirsk, RU, pp. 260-261.
  39. Watson, E.B., Wark, D.A. and Thomas, J.B. (2006), Contribs Mineral. and Petrol., Vol. 151, pp. 413-433. https://doi.org/10.1007/s00410-006-0068-5
File_attachments: