UDC 552.332 + 549 (477)


O.V. Dubyna, DrSc (Geology), Ass. prof. shttps://orcid.org/0000-0002-6003-4873

M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine

34, Acad. Palladin Ave., Kyiv, Ukraine, 03142

Taras Shevchenko National University of Kyiv, Institute of Geology. Educational-scientific institute "Institute of Geology"

90, Vasylkivska Str., Kyiv, Ukraine, 03022

E-mail: dubyna_a@ukr.net

S.G. Kryvdik, DrSc (Geology & Mineralogy), Prof., Head of Department, https://orcid.org/0000-0002-8356-1115

M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine

34, Acad. Palladin Ave., Kyiv, Ukraine, 03142

E-mail: kryvdik@ukr.net

O.A. Vyshnevskyi, PhD (Geology & Mineralogy), Senior Research Fellow, Leading Researcher. Researcher ID: I-9996-2018

M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine

34, Acad. Palladin Ave., Kyiv, Ukraine, 03142

E-mail: vyshnevskyy@i.ua

Language: English

Mineralogical journal 2020, 42 (1): 49-65

Abstract: Alkaline granites and their hypabyssal and effusive varieties have a limited distribution on the Ukrainian Shield, unlike other Precambrian platforms and shields. Grorudite dikes in the Eastern Azov region have discrete chemical and mineral composition and are considered as analogues of alkaline granites — pantellerites (high-Ti or aegirine type) or comendites (low-Ti or amphibole type). High-Ti grorudites are highly enriched in incompatible elements (REE, Zr and Nb) in comparison to low-Ti type. As a result of high-Ti grorudite investigation, new for these rocks titanium minerals (titaniferous hematite with high MnO content, minerals of the FeTiO3–MnTiO3–ZnTiO3 series), previously unknown in these rocks Ca-Na-amphiboles, as well as structural relationships between aegirine and alkaline amphibole were revealed. Despite of high or increased content of HFSE in grorudites, information about their accessory minerals is quite restricted. In the aegirine-bearing varieties of grorudites, such rare elements minerals: monazite-(Ce), bastnäsite-(Ce), britholite-like mineral and REE-enriched apatite, zircon, a Na-rich mineral similar to calciocatapleiite, as well as unidentified zirconium minerals and minerals of the aeschynite group were recognized. In amphibole-bearing dikes zircon and Nb-bearing rutile were only found. These minerals are often very small in size, the largest of them can reach 15—20 μm in size; mostly do not exceed 10 μm. It greatly complicates their identification. An interesting and unusual fact is that many of rare minerals, especially bastnäsite-(Ce), aeschynite group minerals and zircon are present as inclusions in titaniferous hematite. It is assumed that a significant part of rare metals isomorphically incorporate to rock-forming minerals (alkaline pyroxenes and amphiboles). Some of rare minerals (especially zirconium ones) are secondary and were formed as a result of replacement of primary Na (eudialyte, catapleiite, hilairite) or Ca (gittinsite, calciocatapleiite) Zr-silicates, which are more typical in peralkaline (agpaitic) rocks. Taking into account the petrological features and the nature of the rare-earth mineralization of grorudites of the Eastern Azov region, there is a reason to believe that such type of mineralization in these rocks occurs in course of differentiation of the initial magmatic melt(s). Such melts are similar to high-Ti basalts (characteristic rocks of this region) of Devonian age. Secondary hydrothermal processes are weakly manifested in the studied rocks and probably led to substitution of primary accessory minerals. Considering the increased or high concentrations of Nb in high-Ti grorudites and an insignificant amount of Nb-minerals, it is likely that differentiation conditions (low F, high fO2 and hypabyssal conditions of crystallization) did not promote prolonged crystallization with significant accumulation of rare-metal minerals. However, the presence of grorudites with high content of rare metals found in this region increases the prospects for discovery of small alkaline granite intrusions (holocrystalline analogues of grorudites) which may host deposits and/or occurrences of Nb, REE, Zr, Sn, Be.

Keywords: grorudite, alkaline granite, aeschynite-(Ce), zirconium minerals, monazite-(Ce), bastnäsite-(Ce), britholite-like mineral, REE-apatite, Na-rich calciocatapleiite.


  1. Aleksandrov, I.V. (1973), Models of Endogenic Tantalum-Niobium Ore Mineralization, Nauka, Moscow, RU, 148 p. [in Russian].
  2. Amashukeli, Yu.A., Dubyna, O.V. and Kryvdik, S.G. (2011), Mineral. Journ. (Ukraine), Vol. 33, No. 4, Kyiv, UA, pp. 53-65 [in Ukrainian].
  3. Andreev, G.V. and Ripp, G.S. (1996), Zap. Vseros. mineral. ob-va, Ch. 125, Vyp. 6, Leningrad, RU, pp. 24-30 [in Russian]. https://doi.org/10.1007/BF02383977
  4. Andreev, G.V., Ripp, G.S., Sharakshinov, A.O. and Minin, A.D. (1994), Redkometalnaya mineralizatsiia shchelochnykh hranitoidov Zapadnoy Monholii, Izd-vo Buriat. nauch. tsentra, Ulan-Udé, RU, 137 p. [in Russian].
  5. Buturlinov, N.V. (1979), Magmatism of graben-like depressions in the south of the East European Platform in Phanerozoic, Abstr. Thesis for Full Doctor in geol.-mineral. sci., Kyiv, 52 p. [in Russian].
  6. Gorzhevskaya, S.A., Sidorenko, H.A. and Ginzburg, A.I. (1974), Titano-tantalo-niobaty, Nedra, Moscow, RU, 344 p. [in Russian].
  7. Dubyna, O.V. and Kryvdik, S.G. (2013), Visnyk Kyiv Taras Shevchenko Nat. Univ., No. 1, Kyiv, UA, pp. 8-11 [in Ukrainian].
  8. Eliseev, N.A., Kunshev, V.G. and Vinogradov, D.P. (1965), Proterozoic intrusive complex of Eastern Azov, Nauka, Moscow-Leningrad, RU, 204 p. [in Russian].
  9. Kvasnytsya, V.M., Vyshnevskyi, O.A., Kvasnytsya, I.V. and Gurnenko, I.O. (2016), Mineral. Journ. (Ukraine), Vol. 38, No. 3, Kyiv, UA, pp. 9-23 [in Ukrainian].  https://doi.org/10.15407/mineraljournal.38.03.009
  10. Kryvdіk, S.G., Voznyak, D.K., Sharygіn, V.V. and Dubyna, O.V. (2012), Zap. Ukr. mіneral. tov., Vol. 9, Kyiv, UA, pp. 7-34 [in Ukrainian].
  11. Kryvdik, S.G. and Tkachuk, V.I. (1990), Petrologiya shchelochnyh porod Ukrainskogo shchita, Nauk. dumka, Kyiv, UA, 408 p. [in Russian].
  12. Kryvdik, S.G. and Tkachuk, V.I. (1996), Mineral. Journ. (Ukraine), Vol. 18, No. 3, Kyiv, UA, pp. 67-83 [in Ukrainian].
  13. Kryvdik, S.G., Sharygin, V.V., Gatsenko, V.O. and Lunev, E.S. (2016), Mineral. zb., No. 66, Vyp. 2, Lviv, UA, pp. 43-53 [in Ukrainian].
  14. Shatalov, N.N. (1986), Daiyky Pryazoviya, Nauk. dumka, Kyiv, UA, 190 p. [in Russian].
  15. Ballouard, C., Poujol, M., Boulvais, P., Branquet, Y., Tartèse, R. and Vgneresse, J.-L. (2016), Geology, Vol. 44, pp. 231-234. https://doi.org/10.1130/G37475.1
  16. Caroft, M., Maury, R.C., Leterrier, J., Joron, J.L., Cotton, J. and Guille, G. (1993), Lithos, Vol. 30, pp. 1-22. https://doi.org/10.1016/0024-4937(93)90002-T
  17. Chevychelov, V.Y., Zaraisky, G.P., Borisovskii, S.E. and Borkov, D.A. (2005), Petrology, Vol. 13, pp. 305-321.
  18. Collerson, K.D. (1982), Contribs Mineral. and Petrol., Vol. 81, pp. 126-147. https://doi.org/10.1007/BF00372050
  19. Collins, W.J., Beams, S.D., White, A.J.R. and Chappell, B.W. (1982), Contribs Mineral. and Petrol., Vol. 80, pp. 189-200. https://doi.org/10.1007/BF00374895
  20. Eby, G.N. (1992), Geology, Vol. 20, pp. 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
  21. Goodenough, K.M., Upton, B.G.J. and Ellam, R.M. (2000), Lithos, Vol. 51, pp. 205-221. https://doi.org/10.1016/S0024-4937(99)00064-X
  22. Gramenitskii, E.N. and Shchekina, T.I. (2001), Geochem. Int., Vol. 39, pp. 563-576.
  23. Hanchar, J.M. and Watson, E.B. (2003), Zircon saturation thermometry, in Hanchar, J.M., Hoskin, P.W.O. Zircon, Reviews in Mineralogy and Geochemistry, Vol. 53, pp. 89-112. https://doi.org/10.2113/0530089
  24. Kogarko, L.N. (1990), Lithos, Vol. 26, pp. 167-175. https://doi.org/10.1016/0024-4937(90)90046-4
  25. Kovalenko, V.I., Tsaryeva, G.M., Goreglyad, A.V., Yarmolyuk, V.V. and Troitsky, V.A. (1995), Econom. Geol., Vol. 90, pp. 530-547. https://doi.org/10.2113/gsecongeo.90.3.530
  26. Kramm, U. and Kogarko, L.N. (1994), Lithos, Vol. 32, pp. 225-242. https://doi.org/10.1016/0024-4937(94)90041-8
  27. Kwak, T. and Abeysinghe, P.B. (1987), Mineral. Mag., Vol. 51, pp. 665-670. https://doi.org/10.1180/minmag.1987.051.363.05
  28. Lester, G.W., Kyser, T.K., Clark, A.H. and Layton-Matthews, D. (2013), Chemical Geology, Vol. 357, pp. 178-185. https://doi.org/10.1016/j.chemgeo.2013.08.021
  29. Markl, G., Marks, M., Schwinn, G. and Sommer, H. (2001), J. Petrology, Vol. 42, pp. 2231-2258. https://doi.org/10.1093/petrology/42.12.2231
  30. Marks, M., Vennemann, T., Siebeland, W. and Mark, L.G. (2003), J. Petrology, Vol. 44, pp. 1247-1280. https://doi.org/10.1093/petrology/44.7.1247
  31. Marr, R.A., Baker, D.R. and Williains-Jones, A.E. (1998), Canad. Mineral., Vol. 36, pp. 1001-1008.
  32. Miller, R.R. (1986), Geology of the Strange Lake Alkalic Complex and the associated Zr-Y-Be-REE mineralizalion. Newfoundland Departmen of Mines and Energy, Mineral Development Division, Report 86-1. 1986, pp. 11-19. https://doi.org/10.4095/121079
  33. Miller, R.R. (1990), The Slrange Lake pegmatile-aplite hosted rare metal deposit, Labrador: Newfoundland Department of Mines and Energy. Geological Survey Branch, Report 90-1, 1990, pp. 171-182.
  34. Ryerson, F.J. and Hess, P.C. (1978), Geochim. et Cosmochim. acta, Vol. 42, pp. 921-932. https://doi.org/10.1016/0016-7037(78)90103-5
  35. Salvi, S., Fontan, F., Monchoux, P., Williams-Jones, A.E. and Moine, B. (2000), Econom. Geol., Vol. 95, pp. 559-576. https://doi.org/10.2113/gsecongeo.95.3.559
  36. Salvi, S. and Williams-Jones, A.E. (1990), Geochim. et Cosmochim. acta, Vol. 54, pp. 2403-2418. https://doi.org/10.1016/0016-7037(90)90228-D
  37. Salvi, S. and Williams-Jones, A.E. (1996), Geochim. et Cosmochim. acta, Vol. 60, pp. 1917-1932. https://doi.org/10.1016/0016-7037(96)00071-3
  38. Salvi, S. and Williams-Jones, A.E. (2005), Alkaline granite-syenite deposits, in Linnen R.L., Samson I., Breaks F.W. Rare-element geochemistry and mineral deposits. Geological Association of Canada, 2005.
  39. Scalliet, B. and MacDonald, R. (2001), J. Petrology, Vol. 42, pp. 825-845. https://doi.org/10.1093/petrology/42.4.825
  40. Scarfe, C.M. (1977), Canad. Mineral., Vol. 15, pp. 185-189.
  41. Schmitt, A.K., Emmermann, L.R., Trumbull, R.B., Bühn, B., Henjes and Kunst. F. (2000), J. Petrology, Vol. 41, pp. 559-576. https://doi.org/10.1093/petrology/41.8.1207
  42. Schmitt, A.K., Trumbull, R.B., Dulski, P. and Emmermann, R. (2002), Econom. Geol., Vol. 97, pp. 399-413. https://doi.org/10.2113/gsecongeo.97.2.399
  43. Suk, N.I. (2012), Petrology, Vol. 20, No. 2, pp. 138-146. https://doi.org/10.1134/S0869591112020075
  44. Sun, S.-S. and McDonough, W.F. (1989), Geol. Society, Vol. 42, pp. 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
  45. Watson, E.B. (1976), Contribs Mineral. and Petrol., Vol. 56, pp. 119-134. https://doi.org/10.1007/BF00375424
  46. Watson, E.B. (1979), Contribs Mineral. and Petrol., Vol. 70, pp. 407-419. https://doi.org/10.1007/BF00371047
  47. Zajac, J.S. (1992), The Strange Lake Complex and its yttrium and zirconium mineralization. Society for Mining Metallurgy and Exploration Abstract, 1992, р. 69.
  48. Zaraisky, G.P., Korzhinskaya, V. and Kotova, N. (2010), Mineral. and Petrol., Vol. 99, pp. 287-300. https://doi: 10.1007/s00710-010-0112-z