UDC 548.4:552.08


Rainer Thomas, Doctor of Sciences

Helmholtz-Centre Potsdam, German Research Centre for Geoscience

Telegrafenberg, D-14473 Potsdam, Germany,

E-mail: RainerThomas@t-online.de; orcid: 0000-0002-7699-7009

Paul Davidson, Doctor of Sciences

University of Tasmania, CODES, Centre for Ore Deposits and Earth Sciences

Hobart 7001, Australia

E-mail: Paul.Davidson@utas.edu.au; orcid: 0000-0002-6129-0748

Adolf Rericha, PhD. Alemannenstr. 4a, D-14612 Falkensee, Germany

E-mail: ruth.rericha@gmx.de; Scopus ID 6504676937

Dmytro K. Voznyak, Doctor of Sciences

M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine

34, Acad. Palladin Ave., Kyiv, Ukraine, 03142

E-mail: dkvoznyak@ukr.net; orcid: 0000-0002-6124-2033

Language: English

Mineralogical journal 2022, 44 (1): 03-15

Abstract: In this contribution, we show that in miarolitic pegmatites during the crystallization of water-rich melts, samples of these mineral-forming melts were trapped in the form of water-rich melt inclusions, preserved primarily in quartz. The bulk concentration of water and the temperature are the system-determining parameters since from their analysis it follows that these melt inclusions depict pseudo-binary solvus curves in the coordinates of temperature and water concentration. Furthermore, using reduced coordinates (H2O/H2Ocrit vs. T/Tcrit) most melt inclusions of the studied pegmatites plot very well in a standardized and reduced solvus curve. The existence and formation of such uniform solvus curves is an expression of crystallization processes under nearly equilibrium conditions. However, many trace and some principal elements of the melt inclusions trapped near the solvus crest [H2O/H2Ocrit from 0.5 to 1.5 and T/Tcrit > 0.95] show unusual distributions, with very well-defined Gaussian and/or Lorentzian curves, characterized by defined area, width, offset, and height. This has been shown in many natural examples obtained from pegmatites. Only the offset values represent near-equilibrium conditions and corresponding element concentrations, which are equivalent to the regional Clarke number (Clarke number or Clark is the relative abundance of a chemical element, typically in the Earth's crust). We interpret these distributions as explanation for some extraordinary-chemical properties in this critical region: principally extremely high diffusion rates, low dynamic viscosity and extremely low surface tension. Near the critical point, we have both space and time-related non-equilibrium and equilibrium processes close together. Furthermore, we can show that the Gaussian and Lorentzian distribution are first approximations of the specific element distribution because at the critical point the enrichment of some elements reaches such an extent that the Gaussian and/or Lorentzian curves degenerate into a vertical line (are asymptotic to the concentration axis), which is determined by the maximum solubility of a species in the supercritical melt-water system. The highest concentration of Be, as an example, was observed in Ehrenfriedersdorf melt inclusions: 71490 ppm Be.

Keywords: pegmatites, H2O-rich melt inclusions, supercritical state, extreme element enrichment, Gaussian/Lorentzian distribution.


  1. Alimarin, I.P., Fadeeva, V.I. and Dorokhova, E.N. (1976), Lecture experiments in analytical chemistry, Mir Publ., Moscow, RU, 306 p.
  2. Aranovich, L., Akinfiev, N.N. and Golunova, M. (2020), Chemical Geol., Vol. 550 (8), 119699. https://doi.org/10.1016/j.chemgeo.2020.119699
  3. Harrison, S.F. and Mayer, J.E. (1938), Journ. Chem. Phys., Vol. 6, pp. 101-104. https://doi.org/10.1063/1.1750208
  4. Hösel, G. (1994), Das Zinnerz-Lagerstättengebiet Ehrenfriedersdorf / Erzgebirge. Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, Dresden, Vol. 1, 195 p. https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-78881
  5. Kamenetsky, V.S., van Achterbergh, E., Ryan, C.G., Naumov, V.B., Mernagh, T.P. and Davidson, P. (2002), Geology, Vol. 30(5), pp. 459-462. https://doi.org/10.1130/0091-7613(2002)030<0459:ECHOGD>2.0.CO;2
  6. Kammer, H.-W. and Schwabe, K. (1985), Thermodynamik irreversibler Prozesse, Weinheim, 114 p. https://doi.org/10.1515/9783112524947
  7. Pavlishin, V.I. and Dovgyi, S.A. (2007), Mineralogy of the Volynian Champer Pegmatites, Ukraine. Mineralogical Almanac, Vol. 12, 125 p.
  8. Proctor, J.E. (2020), The liquid and supercritical fluid states of matter, CRC Press, 300 p. https://doi.org/10.1201/9780429491443
  9. Rickers, K., Thomas, R. and Heinrich, W. (2006), Mineralium Deposita, Vol. 41, pp. 229-245. https://doi.org/10.1007/s00126-006-0057-7
  10. Sengers, J.L. (2002), How fluids unmix, Amsterdam, 302 p.
  11. Sowerby, J.R. and Keppler, H. (2002), Contrib. Mineral. Petrol., Vol. 143, pp. 32-37. https://doi.org/10.1007/s00410-001-0334-5
  12. Thomas, R. (1982), Ergebnisse der thermobarogeochemischen Untersuchungen an Flüssigkeitseinschlüssen in Mineralen der postmagmatischen Zinn-Wolfram-Mineralisation des Erzgebirges, Freiberger Forschungshefte C370, 85 p.
  13. Thomas, R. and Davidson, P. (2010), Mineral. and Petrol., Vol. 100, 227-239. https://doi.org/10.1007/s00710-010-0132-8
  14. Thomas, R. and Davidson, P. (2012), Ore Geol. Rews, Vol. 46, pp. 32-46. https://doi.org/10.1016/j.oregeorev.2012.02.006
  15. Thomas, R. and Davidson, P. (2013), J. Geosci., Vol. 58, pp. 183-200. https://doi.org/10.3190/jgeosci.135
  16. Thomas, R. and Davidson, P. (2015), Lithos, Vol. 212-215, pp. 462-468. https://doi.org/10.1016/j.lithos.2014.08.028
  17. Thomas. R. and Davidson, P. (2016), Lithos, Vol. 260, pp. 225-241. https://doi.org/10.1016/j.lithos.2016.05.015
  18. Thomas, R. and Davidson, P. (2016b), Ore Geol. Rews, Vol. 72, pp. 1088-1101. https://doi.org/10.1016/j.oregeorev.2015.10.004
  19. Thomas, R., Davidson, P. and Appel, K. (2019), Acta Geochim., Vol. 38, pp. 335-349. https://doi.org/10.1007/s11631-019-00319-z
  20. Thomas, R., Davidson, P. and Beurlen, H. (2012), Mineral. and Petrol., Vol. 106, pp. 55-73. https://doi.org/10.1007/s00710-012-0212-z
  21. Thomas, R., Davidson, P. and Rericha, A. (2020), Mineral. and Petrol., Vol. 114, pp. 161-173. https://doi.org/10.1007/s00710-020-00700-4
  22. Thomas, R., Davidson, P., Rericha, A. and Tietz, O. (2019), Eine außergewöhnliche Einschlussparagenese im Quarz von Steinigtwolmsdorf / Oberlausitz, Berichte der Naturforschenden Gesellschaft der Oberlausitz, Band 27, pp. 161-172.
  23. Thomas, R., Förster, H.-J. and Heinrich, W. (2003), Contrib. Mineral. Petrol., Vol. 144, pp. 457-472. https://doi.org/10.1007/s00410-002-0410-5
  24. Thomas, R., Webster, J.D. and Davidson, P. (2006), Understanding pegmatite formation: The melt and fluid inclusion approach. Chapter 9 in Webster (ed.): Melt Inclusions in Plutonic Rocks, Shourt Course Series of the Mineralogical Association of Canada, Vol. 36, Montreal, pp. 189-210.
  25. Thomas, R., Webster, J.D. and Davidson, P. (2011), Contrib. Mineral. Petrol., Vol. 161, pp. 483-495. https://doi.org/10.1007/s00410-010-0544-9
  26. Thomas, R., Webster, J.D. and Heinrich, W. (2000), Contrib. Mineral. Petrol., Vol. 139, pp. 394-401. https://doi.org/10.1007/s004100000120
  27. Veksler, I.V. and Thomas, R. (2002), Contrib. Mineral. Petrol., Vol. 143, pp. 673-683. https://doi.org/10.1007/s00410-002-0368-3
  28. Voznyak, D.K. (2007), Microinclusion and reconstruction of conditions of endogenous mineral formation, Nauk. dumka, Kyiv, UA, 280 p. [in Ukrainian].
  29. Webster, J.D., Thomas, R., Rhede, D., Förster, H.-J. and Seltmann, R. (1997), Geochim. et Cosmochim. Acta, Vol. 61, Iss. 13, pp. 2589-2604. https://doi.org/10.1016/s0016-7037(97)00123-3