O.V. Pavliuk, RUTILE FROM THE ZELENYI YAR TITANIUM-ZIRCONIUM PLACER

https://doi.org/10.15407/mineraljournal.44.01.016

UDC 549.514.63

RUTILE FROM THE ZELENYI YAR TITANIUM-ZIRCONIUM PLACER AND ITS POSSIBLE PRIMARY SOURCES

O.V. Pavliuk, PhD (Geology), Science Researcher

M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine

34, Acad. Palladin Ave., Kyiv, Ukraine, 03142

E-mail: alia.pavliuk@gmail.com; orcid: 0000-0001-5234-2908

V.M. Pavliuk, Chief Geologist, Junior Research Fellow

State Enterprise "Ukrainian Geological Company", Right Bank Geological Expedition

1A, Yaroslava Mudroho Str., Fursy vill., Ukraine, 09150

M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine

34, Acad. Palladin Ave., Kyiv, Ukraine, 03142

E-mail: v-pavlyuk@ukr.net; orcid: 0000-0002-7035-8505

Language: Ukrainian

Mineralogical journal 2022, 44 (1): 16-31

Abstract: Rutile of the Neogene-aged Zelenyi Yar titanium-zirconium placer was studied. The average size of the rutile grains is 0.25 mm that are elliptical, rounded, short-prismatic, isometric, and elongated-prismatic crystals in shape. On the surface of the crystals, elements of physical abrasion of varying degrees, as well as chemical dissolution, are observed. The color of the rutile crystals ranges from black to yellow with black and brown being the most common. A relationship between the concentration of various impurity elements and their variations with the color of the crystals is present. The highest average content of impurity elements is recorded in green rutiles and the lowest in light brown crystals. About 61% of the rutiles contain V2O5 (30% of all crystals; average content 1.28%), Nb2O5 (25%; 1.38%), FeO (24%; 1.10%), WO3 (9%; 0.91%), ZrO2 (9%; 0.85%), Al2O3 (2%; 0.70%), Cr2O3 (5%; 0.60%), SiO2 (7%; 0.57%). The temperature of primary rutile crystallization was calculated using Zr-in-rutile thermometry and corresponds to granulite and eclogite metamorphic conditions. Cluster analysis of 284 microprobe analyses of rutile allows at least five groups of crystals to be identified. According to the chemical composition of various rutiles, it can be concluded that they originated from metapelitic rocks, enderbites, and eclogite-like rocks located in the Dniester-Bug megablock of the Ukrainian Shield.

Keywords: rutile, chemical composition, morphology, titanium-zirconium placer.

References:

  1. Ganzha, E.V., Oholina, T.V. and Kroshko, Ju.V. (2019), Zbirnyk nauk. prac' UkrDGRІ, No. 3-4, pp. 26-38 [in Russian].
  2. Gordienko, V.V., Gordienko, I.V., Zavhorodniaia, O.V., Logvinov, I.M., Tarasov, V.N. and Usenko, O.V. (2004), Geothermal atlas of Ukraine, Kyiv, UA, 60 p. [in Russian and English].
  3. Derkach, S.S., Ziultsle, V.V., Vykhodtsev, M.K. and et al. (2018), State Geological Map of Ukraine, scale 1:200 000. Central Ukrainian series M-35-XXX (Gaisin), DP Ukr. heol. kompaniia, Kyiv, UA, 144 p. [in Ukrainian].
  4. Zherdeva, A.N. and Abulevich, V.K. (1964), Mineralogy of titanium placers, Nedra, Mocow, RU, 239 p. [in Russian].
  5. Kvasnytsya, V.M. and Vyshnevskiy, O.V. (2017), Mineral. Journ. (Ukraine), Vol. 39, No. 3, UA, pp. 17-31 [in Ukrainian]. https://doi.org/10.15407/mineraljournal.39.03.017
  6. Polkanov, Yu.A. (2009), Small diamonds from sand deposits: distribution, properties, origin, meaning, SPD Baranovskiy, A.Ye. publ., Simferopol, UA, 228 p. [in Russian].
  7. Rezvuhin, D.I. (2016), Garnets with mineral inclusions of oxides and sulfides from the Internatsionalnaya kimberlite pipe: mineralogy, geochemistry and connection with the processes of mantle metasomatism in the lithospheric mantle of the Mirninsky field, Siberian Craton, Abstr. of geol.-min. sci. dis., Novosibirsk, RU, 19 p. [in Russian].
  8. Sobolev, N.V., Logvinova, A.M., Lavrent'eva, Yu.G., Karmanov, N.S., Usova, L.V., Koz'menko, O.A. and Ragozin, A.L. (2011), Dokl. AN, Vol. 439, No. 1, pp. 102-105 [in Russian]. https://doi.org/10.1134/S1028334X11070099
  9. Specius, Z.V. and Safronov, A.F. (1986), Notes All-Union Mineral. Soc., Vol. 6, Ch. 115, RU, pp. 699-705 [in Russian].
  10. Tsymbal, S.N. and Polkanov, Yu.A. (1975), Mineralogy of titanium-zirconium placers of Ukraine, Nauk. dumka, Kyiv, UA, 247 p. [in Russian].
  11. Chesnokov, B.V. (1959), Izv. vyssh. uch. zaved. Geol. i razv., Vol. 4, pp. 124-136 [in Russian].
  12. Shlyukova, Z.V., Tsepin, A.I., Borisova, E.A., Vlasova, E.V. and Dmitrieva, M.T. (1986), Dokl. AN SSSR, Vol. 287, No. 4, pp. 969-973 [in Russian].
  13. Shockiy, I.I., Degtyareva, L.L. and Sidorenko, V.A. (1962), Geological map of scale 1:50 000 of the territory of sheets M-25-108-A, B (GSP-39 PGE KGT), Geoіnform publ., Kyiv, UA, 233 p. [in Russian].
  14. Yurk, Yu.Yu., Kashkarov, I.F., Polkanov, Yu.A., Eremenko, G.K. and Yalovenko, I.P. (1973), Diamonds from sandy deposits of Ukraine, Nauk. dumka, Kyiv, UA, 166 p. [in Russian].
  15. Belkasmi, M., Cuney, M., Pollard, P.J. and Bastoul, A. (2000), Mineral. Mag., Vol. 64, Iss. 3, pp. 507-523. https://doi.org/10.1180/002646100549391
  16. Boctor, N.Z. and Boyd, F.R. (1981), Contr. Mineral. Petrol., Vol. 76, pp. 253-259. https://doi.org/10.1007/BF00375452
  17. Černý, P., Novák, M., Chapman, R. and Ferreira, K.J. (2007), J. Geosci., Vol. 52, pp. 143-159. http://dx.doi.org/10.3190/jgeosci.008
  18. Chebotarev, D.A., Doroshkevich, A.G., Klemd, R. and Karmanov, N.S. (2017), Period. di Mineral., Vol. 86, No. 2, pp. 99-118. https://doi.org/10.2451/2017PM733
  19. Cherniak, D.Y. and Watson, E.B. (2019), Amer. Mineral., Vol. 104, pp. 1638-1649. https://doi.org/10.2138/am-2019-7030
  20. Diebold, U., Li, M., Dulub, O., Hebenstreit, E.L.D. and Hebenstreit, W. (2000), Surf. Rev. Lett., Vol. 7, No. 5-6, pp. 613-617. https://doi.org/10.1142/S0218625X0000052X
  21. Dill, H.G., Melcher, F., Füßl, M. and Weber, B. (2007), Mineral. Petrol., Vol. 89, Iss. 3-4, pp. 133-158. https://doi.org/10.1007/s00710-006-0140-x
  22. Doroshkevich, A.G., Wall, F. and Ripp, G.S. (2007), Mineral. Petrol., Vol. 90, pp. 19-49. https://doi.org/10.1007/s00710-006-0165-1
  23. Droop, G.T.R. (1987), Mineral. Mag., Vol. 51, Iss. 361, pp. 431-435. https://doi.org/10.1180/minmag.1987.051.361.10
  24. Ewing, T.A., Hermann, Y. and Rubatto, D. (2013), Contr. Mineral. Petrol., Vol. 165, No. 4, pp. 757-779. https://doi.org/10.1007/s00410-012-0834-5
  25. Gao, G., John, T., Klemd, R. and Xiong, X. (2007), Geochim. Cosmochim. Acta, Vol. 71, pp. 4974-4996. https://doi.org/10.1016/j.gca.2007.07.027
  26. Gregoire, M., Bell, D.R. and Le Roex, A.P. (2002), Contr. Mineral. Petrol., Vol. 142, Iss. 5, pp. 603-625. https://doi.org/10.1007/s00410-001-0315-8
  27. Hoff, C.M. and Watson, E.B. (2018), Goldschmidt Abstracts, p. 1035.
  28. Jonson, G. and Weyl, W.A. (1949), J. Am. Ceram. Soc., Vol. 32, No. 12, pp. 398-401. https://doi.org/10.1111/j.1151-2916.1949.tb18920.x
  29. Kalfoun, F., Ionov, D. and Merlet, C. (2002), Earth Planet. Sci. Lett., Vol. 199, Iss. 1-2, pp. 49-65. https://doi.org/10.1016/S0012-821X(02)00555-1
  30. Korneliussen, A., McLimans, R., Braathen, A., Erambert, M., Lutro, O. and Ragnhildstveit, J. (2000), NGU Bulletin, Vol. 436, pp. 39-47.
  31. Litasov, K.D., Litasov, Y.D., Malkovets, V.G. and Taniguchi, H. (2006), J. Northeast Asian Stud., Vol. 10, pp. 161-175.
  32. Liu, L., Aulbach, S., Li, D. and Hou, Zh. (2014), Contr. Mineral. Petrol., Vol. 167, No. 6, pp. 1-22. https://doi.org/10.1007/s00410-014-1026-2
  33. Luvizotto, G.L. and Zack, T. (2009), Chem. Geol., Vol. 261, Iss. 3-4, pp. 303-317. https://doi.org/10.1016/j.chemgeo.2008.07.023
  34. Luvizotto, G.L., Zack, T., Triebold, S. and Eynatten, H. (2009), Miner. Petrol., Vol. 97, No. 3-4, pp. 233-249. https://doi.org/10.1007/s00710-009-0092-z
  35. Malkovets, V.G., Rezvukhin, D.I., Belousova, E.A., Griffin, W.L., Sharygin, I.S., Tretiakova, I.G., Gibsher, A.A., O'Reilly, S.Y., Kuzmin, D.V., Litasov, K.D., Logvinova, A.M., Pokhilenko, N.P. and Sobolev, N.V. (2016), Lithos, Vol. 265, pp. 304-311. https://doi.org/10.1016/j.lithos.2016.08.017
  36. Meinhold, G., Anders, B., Kostopoulos, D. and Reischmann, T. (2008), Sediment. Geol., Vol. 203, Iss. 1-2, pp. 98-111. https://doi.org/10.1016/j.sedgeo.2007.11.004
  37. Ottenburgs, R. and Fieremans, M. (1979), Bull. Soc. Belge de Géol., Vol. 88, No. 3-4, pp. 197-203.
  38. Ren, Y., Fei, Y., Yang, J. and Bai, W. (2009), J. Earth Sci., Vol. 20, No. 2, pp. 274-283. https://doi.org/10.1007/s12583-009-0025-0
  39. Reznitsky, L.Z., Sklyarov, E.V., Suvorova, L.F., Barash, I.G. and Karmanov, N.S. (2017), Geol. Ore Depos., Vol. 59, No. 8, pp. 707-719. https://doi.org/10.1134/S1075701517080086
  40. Ripp, G.S., Karmanov, N.S., Doroshkevich, A.G., Badmatsyrenov, M.V. and Izbrodin, I.A. (2006), Geochem. Int., Vol. 44, No. 4, pp. 395-402. https://doi.org/10.1134/S0016702906040069
  41. Sobolev, N.V. and Yefimova, E.S. (2000), Int. Geol. Rev., Vol. 42, Iss. 8, pp. 758-767. https://doi.org/10.1080/00206810009465110
  42. Tappe, S., Kjarsgaard, B.A., Kurszlaukis, S., Nowell, G.M. and Phillips, D. (2014), J. Petrol., Vol. 55, Iss. 10, pp. 2003-2042. https://doi.org/10.1093/petrology/egu048
  43. Triebold, S., von Eynatten, H., Luvizotto, G.L. and Zack, T. (2007), Chem. Geol., Vol. 244, Iss. 3-4, pp. 421-436. https://doi.org/10.1016/j.chemgeo.2007.06.033
  44. Watson, E.B., Wark, D.A. and Thomas, J.B. (2006), Contr. Mineral. Petrol., 2006, Vol. 151, pp. 413-433. https://doi.org/10.1007/s00410-006-0068-5
  45. Watson, T.L. (1922), J. Washington Acad. Sci., Vol. 12, No. 20, pp. 447-454.
  46. Zack, T., Moraes, R. and Kronz, A. (2004), Contr. Mineral. Petrol., Vol. 148, Iss. 4, pp. 471-488. https://doi.org/10.1007/s00410-004-0617-8
  47. Zack, T., von Eynatten, H. and Kronz, A. (2004), Sediment. Geol., Vol. 171, Iss. 1-4, pp. 37-58. https://doi.org/10.1016/j.sedgeo.2004.05.009
  48. Zurevinski, S.E. and Mitchell, R.H. (2011), Contr. Mineral. Petrol., Vol. 161, Iss. 5, pp. 765-776. https://doi.org/10.1007/s00410-010-0561-8 

PDF

Англійська