UDC 549.211


V.M. Kvasnytsya, DrSc (Mineralogy and Crystallography), Prof., Head of Department

M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine

34, Acad. Palladin Ave., Kyiv, Ukraine, 03142

E-mail: vmkvas@hotmail.com; orcid: 0000-0002-3692-7153

Language: Ukrainian

Mineralogical journal 2022, 44 (1): 32-40

Abstract: The size and shape of diamond crystals of different origin are analyzed. Diamonds with a size of less than about 0.5 mm are classified as microcrystals. Diamonds found in meteorites typically show non-faceted anhedral crystals of various sizes. Only the Canyon Diablo iron meteorite has cubic microcrystals of unclear crystallogenesis. Nano, micro- and macro-sized crystals of diamond in meteorites are usually aggregate in nature. The release of diamond polyhedra in meteorites is limited by the too small size of its crystals in chondrites and by its solid-phase transformation from very fine-grained diamond and graphite in ureilites and octahedrites. The size and shape of diamond crystals found in meteorite impact craters are determined by the nature of the source carbon material. The process of solid-phase transformation of graphite or other carbon-bearing materials (e.g., coal, plant remains) to diamond in meteorite craters does not allow euhedral crystal to be formed. At the same time, in the case of diamonds formed from impacts, on the (0001) faces of impact apographitic diamonds, polyhedra of nano-microdiamonds crystallize from the gas phase. These crystals are often form autoepitaxially, because they crystallize in an oriented manner on the lonsdaleite -diamond matrix. Diamonds found in metamorphic rocks, ophiolites and modern volcanites show faceted microcrystals. A wide range of sizes, from 0.1 mm to 10 cm, is characteristic of faceted diamond crystals from kimberlites, lamproites and lamprophyres. Diamond crystals from different mantle rocks acquire a multifaceted shape after reaching certain embryo sizes — the most likely appearance of diamond polyhedra larger than 40-50 nm. Octahedra forms are dominant for natural diamond crystals of different sizes and origin.

Keywords: diamond, geological-genetic types of diamond, nano-micro- and macrocrystals, crystal size, crystal shape.


  1. Walter, A.A., Eremenko, G.K., Kvasnitsa, V.N. and Polkanov, Yu.A. (1992), Impact-metamorphogenic minerals of carbon, Nauk. dumka, Kyiv, UA, 172 p. [in Russian].
  2. Vdovykin, G.P. (1970), Diamonds in meteorites, Nauka, Moscow, RU, 127 p. [in Russian].
  3. Galimov, E.M. and Kaminsky, F.V. (2021), Geochemistry, Vol. 66, No. 1, RU, pp. 3-14 [in Russian]. https://doi.org/10.31857/S0016752521010040
  4. Zinchuk, N.N., Koptil, V.I. and Kvasnitsya, V.N. (2003), Mineral. Journ. (Ukraine), Vol. 25, No. 4, UA, pp. 32-47 [in Russian].
  5. Kvasnitsa, V.N., Kharkiv, A.D. and Zinchuk, N.N. (1994), The nature of diamond, Nauk. dumka, Kyiv, UA, 208 p. [in Russian].
  6. Petrovskaya, N.V. (1985), Mineral. Journ. (Ukraine), Vol. 7, No. 2, UA, pp. 3-11 [in Russian].
  7. Pokhilenko, N.P., Shumilova, T.G., Afanasiev, V.P. and Litasov, K.D. (2019), Geol. and geophysics, Vol. 60, No. 5, RU, pp. 606-618 [in Russian]. https://doi.org/10.15372/GiG2019024
  8. Rakin, V.I. (2013), Vestnik Institute Geol. Komi SC UrB RAS, No. 3, pp. 23-26 [in Russian].
  9. Carlisle, D.B. (1992), Nature, Vol. 357, pp. 119-120. https://doi.org/10.1038/357119c0
  10. Chapman, J.G. and Boxer, G.L. (2004), Lithos, Vol. 76, No. 1-4, pp. 369-375. https://doi.org/10.1016/j.lithos.2004.03.021
  11. Dahl, J.E., Liu, S.G. and Carlson, R.M.K. (2003), Science, Vol. 299, No. 5603, pp. 96-99. https://doi.org/10.1126/science.1078239
  12. Daulton, T.L. (2005), In "Synthesis, Properties and Applications of Ultrananocrystalline Diamond", Gruen, D.M. et al. (eds), Springer, Printed in the Netherlands, pp. 49-62.
  13. Ferreira, J.J. (2013), Sampling and estimation of diamond content in kimberlite based on microdiamonds, Ecole Nationale Supérieure des Mines de Paris, 207 p.
  14. Gebbie, M.A., Ishiwata, H., McQuade, P.J., Petrak, V., Taylor, A., Freiwald, Ch., Dahl, J.E., Carlson, R.M.K., Fokin, A.A., Schreiner, P.R., Shen Zhi-Xun, Nesladek, M. and Melosh, N.A. (2018), PNAS, Vol. 115, No. 33, pp. 8284-8289. https://doi.org/10.1073/pnas.1803654115
  15. Gilmour, I., Russell, S.S., Arden, J.W., Lee, M.R., Franchi, I.A. and Pillinger, C.T. (1992), Science, Vol. 258, No. 5088, pp. 1624-1626. https://doi.org/10.1126/science.258.5088.1624
  16. Haggerty, S.E. (2019), Geochim. Cosmochim. Acta, Vol. 266, pp. 184-196. https://doi.org/10.1016/j.gca.2019.03.036
  17. Hough, R.M., Gilmour, I., Pillinger, C.T., Langenhorst, F. and Montanari, A. (1997), Geology, Vol. 25, No. 11, pp. 1019-1022. https://doi.org/10.1130/0091-7613(1997)0252.3.CO;2
  18. Kaminsky, F.V. (2007), J. Geol. Soc. India, Vol. 69, No. 3, pp. 557-575.
  19. Kaminsky, F.V. and Voropaev, S.A. (2021), Geochem. Int., Vol. 59, No. 11, pp. 1038-1051. https://doi.org/10.1134/S0016702921110033
  20. Krebs, M.Y., Pearson, D.G., Stachel, T., Stern, R.A., Nowicki, T. and Cairns, S. (2016), Econom. Geol., Vol. 111, No. 2, pp. 503-525. https://doi.org/10.2113/econgeo.111.2.503
  21. Kvasnitsa, V.N., Zinchuk, N.N. and Koptil, V.I. (1999), Tipomorphizm of diamond microcrystals, Publ. House Nedra, Moscow, RU, 224 p.
  22. Kvasnytsya, V. and Wirth, R. (2013), Diamond and Related Materials, Vol. 32, pp. 7-16. https://doi.org/10.1016/j.diamond.2012.11.010
  23. Pattison, D.R.M. and Levinson, A.A. (1995), Applied Geochem. Vol. 10, pp. 725-738. https://doi.org/10.1016/0883-2927(95)00037-2
  24. Simakov, S.K. (2018), Geoscience Frontiers, Vol. 9, pp. 1849-1858. https://doi.org/10.1016/j.gsf.2017.10.006
  25. Yang, J.S., Robinson, P.T. and Dilek, Y. (2014), Elements, Vol. 10, No. 2, pp. 127-130. https://doi.org/10.2113/gselements.10.2.127