M.M. Taran, SPATIAL DISTRIBUTION OF THE Fe2+ IN THE TETRAHEDRAL  STRUCTURAL POSITION OF Be2+ IN CRYSTALS OF NATURAL BERYL

https://doi.org/10.15407/mineraljournal.45.02.016

UDC 548.32:549.646

SPATIAL DISTRIBUTION OF THE Fe2+ IN THE TETRAHEDRAL 

STRUCTURAL POSITION OF Be2+ IN CRYSTALS OF NATURAL BERYL

M.M. Taran, DcSc (Geology and Mineralogy), Head of Department

E-mail: m_taran@hotmail.com; orcid: 0000-0001-7757-8829 

O.A. Vyshnevskyi, PhD (Geology and Mineralogy), Senior Research Fellow

E-mail: vyshnevskyy@i.ua; orcid: 0000-0002-7206-2185 

M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine

34, Acad. Palladin Ave., Kyiv, Ukraine, 03142

Language: Ukrainian

Mineralogical journal 2023, 45 (2): 16-31

Abstract: Variously colored gem-quality iron-bearing beryls from two Brazilian localities, Lavra do Abilio (Minas Gerais) and Garimpo do Cercadinho (Bahia), were studied by polarized optical absorption spectroscopy and microprobe analysis. The purpose of this study was to investigate the spatial distribution of Fe2+ in the tetrahedral site that is normally occupied by Be2+ along the c-axis of the crystals. This was done by measuring the intensity of the E^c-polarized electronic spin-allowed band of BeFe2+ that occurs at ~12 000 cm–1. The beryl samples from the two localities are different because crystals from Lavra do Abilio show a homogeneous distribution of Fe2+, whereas Fe2+ in Garimpo do Cercadinho beryls strongly varies along c. This indicates different physico-chemical conditions of crystallization. No correlation between BeFe2+ and Fetotal and Fe2+ at the octahedral Al-site was deteremined by microprobe analysis. The latter (VIFe2+) causes the blue color of aquamarine and the green color of "green" beryl. Heliodor centers also affect color. An analysis of weak narrow spin-forbidden bands of octahedral VIFe3+ at the nominal Al site and narrow molecular H2O (located in structural channels) vibrational modes indicates that both are distributed homogenously in both beryl types. Investigation of a light-blue synthetic hydrothermally grown beryl, which was studied as well, shows that the BeFe2+ distribution along c and perpendicular to c is constant in value.

Keywords: beryl, optical absorption spectroscopy, microprobe composition, iron ions zoning.

References:

  1. Zavarzina, N.I., Gabuda, S.P., Bakakin, V.V. and Rylov, G.M. (1969), J. Structural Chem., Vol. 10, No. 5, RU, pp. 804-810 [in Russian].
  2. Lebedev, A.S., Klyachin, V.A. and Solntsev, V.P. (1988), The materials on genetic and experimental mineralogy. Growth and properties of crystals, in Sobolev, N.V. (ed.), Nauka, Novosibirsk, RU [in Russian].
  3. Platonov, A.N., Kupriyanova, I.I. and Taran, M.N. (2012), Mineral. Journ. (Ukraine), Vol. 34, No. 1, Kyiv, UA, pp. 81-93 [in Russian].
  4. Platonov, A.N., Polshyn, E.V. and Taran, M.N. (1979), Zap. Vses. mineral. obsch., Vol. 108, No. 6, RU, pp. 725-730 [in Russian].
  5. Platonov, A.N., Taran, M.N., Polshyn, E.V. and Minko, O.E. (1979), Izv. AN SSSR, Ser. Geol., No. 10, RU, pp. 54-68 [in Russian].
  6. Platonov, A.N., Khomenko, V.M. and Taran, M.N. (2016), Mineral. Journ. (Ukraine), Vol. 38, No. 2, Kyiv, UA, pp. 3-14 [in Russian]. https://doi.org/10.15407/mineraljournal.38.02.003 
  7. 7.Rabinovich, V.A. and Khavin, Z.Ya. (1977), Short chemical hand-book, Chimia publ., Leningrad, RU, 392 p. [in Russian].
  8. Taran, M.N. (2020), Optical Spectroscopy of Ions of Transitional Metals of Minerals at Different Temperatures and Pressures: spectroscopic, crystal chemical and thermodynamic aspects, Nauk. dumka, Kyiv, 399 p. [in Ukrainian].
  9. Taran, M.N., Klyachin, B.A., Platonov, A.N., Polshyn, E.V. and Indutny, V.V. (1989), Kristallografiya, Vol. 34, No. 6, RU, pp. 1470-1474 [in Russian].
  10. Taran, M.N., Platonov, A.N., Kalinichenko, A.M. and Povarennykh, A.S. (1978), Dokl. AN USSR, Ser. B, No. 5, Kyiv, UA, pp. 415-419 [in Russian].
  11. Khomenko, V.M., Savchuk, Ye.O., Vyshnevskyi, O.A. and Dovbnya, N.A. (2010), Proc. Ukr. Mineral. Soc., Iss. 7, Kyiv, UA, pp. 64-71 [in Ukrainian].
  12. Andersson, L.O. (2013), Can. Mineral., Vol. 51, No. 1, pp. 15-25. https://doi.org/10.3749/canmin.51.1.15 
  13. Bersuker, I.B. (1996), Electronic structure and properties of transition metal compounds: Introduction to theory, John Wiley & Sons, N-Y, 759 p.
  14. Burns, R.G. (1993), Mineralogical Applications of Crystal Field Theory, 2nd ed., Cambridge Univ. Press, Cambridge, 550 p.
  15. Chen, W., Gu, H., Liu, J., Wang, F., Ma, D. and Zhu, R. (2010), Physica B, Vol. 405, No. 1, pp. 331-334. https://doi.org/10.1016/j.physb.2009.08.078 
  16. Dvir, M. and Low, W. (1960), Phys. Rev., Vol. 119, No. 5, pp. 1587-1591. https://doi.org/10.1103/PhysRev.119.1587 
  17. Edgar, A. and Hutton, D.R. (1982), Solid state communications, Vol. 41, No. 5, pp. 195-198. https://doi.org/10.1016/0038-1098(82)91066-3
  18. Eeckhout, S.G. and Castañeda, C. (2004), Goldschmidt Conf., Copenhagen, June 5-11, A68. 
  19. Eeckhout, S.G., Neisius, T. and Castañeda, C. (2005), Nucl. Instr. Meth. Phys. Res. B, Vol. 229, No. 1, pp. 73-77. https://doi.org/10.1016/j.nimb.2004.11.001
  20. Figueiredo, M.O., Pereira da Silva T., Veiga, J.P., Leal Gomes C. and De Andrade, V. (2008), Mineral. Mag., Vol. 72, No. 1, pp. 175-178. https://doi.org/10.1180/minmag.2008.072.1.175
  21. Fridrichová, J., Bačík, P., Ertl, A., Wildner, M., Dekan, J. and Miglierini, M. (2018), J. Molecular Struc., Vol. 1152, No. 15, pp. 79-86. https://doi.org/10.1016/j.molstruc.2017.09.081
  22. Goldman, S.D., Rossman, G.R. and Parkin, K.M. (1978), Phys. Chem. Minerals, Vol. 3, No. 3, pp. 225-235. https://doi.org/10.1007/BF00633572
  23. Graziani, G., Lucchesi, S. and Scandale, E. (1990), Phys. Chem. Minerals, Vol. 17, No. 5, pp. 379-384. https://doi.org/10.1007/BF00212205
  24. Groat, L.A., Rossman, G.R., Dyar, M.D., Turner, D., Piccoli, P.M.B., Schultz, A.J. and Ottolini, L. (2010), Canad. Mineral., Vol. 48, No. 3, pp. 597-613. https://doi.org/10.3749/canmin.48.3.597
  25. Hall, A. and Walsh, J.N. (1971), Mineral. Mag., Vol. 38, No. 295, pp. 328-334. https://doi.org/10.1180/minmag.1971.038.295.07
  26. Judd, D.B. and Wyszecki, G. (1963), Color in business, science and industry, Wiley, 500 p.
  27. Khaibullin, R.I., Lopatin, O.N., Vagizov, F.G., Bazarov, V.V., Bakhtin, A.I., Khaibullin, I.B. and Aktas, B. (2003), Nucl. Instr. Meth. Phys. Res. B, Vol. 206, pp. 277-281. https://doi.org/10.1016/S0168-583X(03)00744-4
  28. Lin, J., Chen, N., Huang, D. and Pan, Y. (2013), Amer. Mineral., Vol. 98, No. 10, pp. 1745-1753. https://doi.org/10.2138/Amer.2013.4472
  29. Marfunin, A.S. (1979), Physics of Minerals and Inorganic Materials: an Introduction, Springer-Verlag, Berlin, Heidelberg, 340 p.
  30. Platonov, A.N., Taran, M.N., Minko, O.E. and Polshyn, E.V. (1978), Phys. Chem. Minerals, Vol. 3, No. 1, pp. 87-88.
  31. Price, D.C., Vance, E.R., Smith, G., Edgar, A. and Dickson, B.L. (1976), J. Phys. Colloques., Vol. 37, pp. C6-811-C6-817. https://doi.org/10.1051/jphyscol:19766171
  32. Přikryl, J., Novák, M., Filip, J., Gadas, P. and Vašinová Galiová, M. (2014), Can. Mineral., Vol. 52, No. 2, pp. 271-284. https://doi.org/10.3749/canmin.52.2.271
  33. Rossman, G.R. and Taran, M.N. (2001), Amer. Mineral., Vol. 86, No. 7-8, pp. 896-903. https://doi.org/10.2138/am-2001-0713
  34. Samoilovich, M.I., Tsinober, L.I. and Dunin-Barkovskii, R.L. (1971), Kristallografiya, Vol. 16, No. 1, pp. 186-189. (Transl. Soviet Physics - Crystallography, 1971, Vol. 16, pp. 147-150).
  35. Scandale, E. and Ucchesi, S. (2000), Eur. J. Mineral., Vol. 12, No. 2, pp. 357-366. https://doi.org/10.1127/0935-1221/2000/0001-0357
  36. Shannon, R.D. (1976), Acta Crystallogr., A32, No. 5, pp. 751-757. https://doi.org/10.1107/S0567739476001551
  37. Spinolo, G., Fontana, I. and Galli, A. (2007), Phys. Stat. Sol. B, Vol. 244, No. 12, pp. 4660-4668. https://doi.org/10.1002/pssb.200743102
  38. Sugitani, Y., Nagashima, K. and Fujiwara, Sh. (1966), Bull. Chem. Soc. Japan, Vol. 39, No. 4, pp. 672-674. https://doi.org/10.1246/bcsj.39.672
  39. Taran, M.N., Dyar, M.D. and Khomenko, V.M. (2018), Phys. Chem. Minerals, Vol. 45, No. 2, pp. 489-496. https://doi.org/10.1007/s00269-017-0936-8
  40. Taran, M.N., Ohashi, H. and Koch-Müller, M. (2008), Phys. Chem. Minerals, Vol. 35, No. 3, pp. 117-127. https://doi.org/10.1007/s00269-007-0202-6
  41. Taran, M.N. and Rossman, G.R. (2001), Amer. Mineral., Vol. 86, No. 9, pp. 973-980. https://doi.org/10.2138/am-2001-8-903
  42. Taran, M.N. and Vyshnevskyi, O.A. (2019) Phys. Chem. Minerals, Vol. 46, No. 8, pp. 795-806. https://doi.org/10.1007/s00269-019-01040-2
  43. Turner, D., Groat, L.A., Hart, C.J.R., Mortensen, J.K., Linnen, R.L., Giuliani, G. and Wengzynowski, W. (2007), Can. Mineral., Vol. 45, No. 2, pp. 203-227. https://doi.org/10.2113/gscanmin.45.2.203
  44. Wood, D.L. and Nassau, K. (1968), Amer. Mineral., Vol. 53, No. 5-6, pp. 777-800.

PDF (article)

Supplementary material (PDF)
https://doi.org/10.15407/mineraljournal.45.02.016-d 

 

English