O.M. Ponomarenko, ELECTRONIC STATES DENSITY, RESISTIVITY, AND PHASE COMPOSITION OF CaTiO3 PEROVSKITE WITH ISOMORPHIC IMPURITY OF NIOBIUM

https://doi.org/10.15407/mineraljournal.45.04.003

UDC 549.08

ELECTRONIC STATES DENSITY, RESISTIVITY, AND PHASE COMPOSITION

OF CaTiO3 PEROVSKITE WITH ISOMORPHIC IMPURITY OF NIOBIUM

O.M. Ponomarenko1, DrSc (Geology), Academician of NAS of Ukraine, Director

E-mail: pan.igmof@gmail.com; orcid: 0000-0002-5179-6091 

L.M. Stepanyuk1, DrSc (Geology), Corresp. Member of NAS of Ukraine, Prof., Deputy Director

E-mail: stepaniuk@nas.gov.ua; orcid: 0000-0001-5591-5169 

A.S. Smolyar1, PhD (Technology of Silicates and Refractory Inorganic Materials), Senior Researcher

E-mail: smolyar@nas.gov.ua; orcid: 0009-0002-2201-6823 

A.O. Burkhan1, PhD (Materials Science Engineering), Senior Researcher

E-mail: burkhan.anatoliy@ukr.net; orcid: 0009-0002-3155-0171

O.M. Bloshchanevich2, Researcher

E-mail: alex.bl337777@gmail.com; orcid: 0009-0008-3624-9082 

A.I. Stegniy2, Researcher

E-mail: steg888999@gmail.com; orcid: 0009-0007-4082-4425

V.L. Bekenev2, Senior Researcher

E-mail: alitub@ukr.net; orcid: 0009-0003-2438-4731

A.V. Stepanenko1, 2, PhD (Solid State Physics), Senior Researcher

E-mail: stepart6913@gmail.com; orcid: 0000-0003-2282-146X

V.G. Khomenko3, DrSc (Engineering), Associate Professor

E-mail: v.khomenko@i.ua; orcid: 0000-0003-0013-8010

M.P. Brodnikovskyy2, PhD (Solid State Physics), Head of Department

E-mail: nbrodnik@gmail.com; orcid: 0000-0001-7649-7373

B.S. Khomenko4, Senior Engineer

E-mail: bskhomenko40@gmail.com; orcid: 0009-0006-0707-7707

1 M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine

34, Akad. Palladin Ave., Kyiv, Ukraine, 03142

2 I.M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine

3, Omeliana Pritsaka (Krzhizhanovsky) Str., Kyiv, Ukraine, 03142

3 Kyiv National University of Technologies and Design

Department of Chemical Technologies and Resource Saving

2, Mala Shyianovska Str., Kyiv, Ukraine, 01011

4 V.I. Vernadsky Institute of General and Inorganic Chemistry of the NAS of Ukraine

32/34, Akad. Palladin Ave., Kyiv, Ukraine, 03142

Language: English

Mineralogical journal 2023, 45 (4): 03-12

Abstract: The application of materials with a perovskite structure has currently become one of the most promising approaches for the development of photovoltaic systems. A method for high-speed synthesis (under 15 minutes) of CaTiO3 perovskite — TiO2 rutile with the possibility of concurrent doping of the product has been developed. The density of electronic states, phase composition features, and resistivity of niobium-doped perovskite (CaTiO3) were investigated. The calculations of the density of electronic states for niobium-doped CaTiO3 have shown that at low concentrations of niobium, the samples exhibit conductivity characteristic of semiconductors. Since niobium has one more valence electron compared to titanium, as the niobium content increases, the Fermi level shifts to the band of free states. This shift of the Fermi level should lead to a change in the nature of the conductivity of doped crystals, eventually transitioning to metallic conductivity at high concentrations of niobium. Composite analysis (СаТіО3+ТіО2) by X-ray diffraction has shown that the use of niobium as a doping element significantly accelerates the CaTiO3 synthesis reaction, and increases the perovskite concentration in the sample. The concentration of CaTiO3 in the sample the with niobium is 83 % vol. at a temperature of 900ºC and at a synthesis time of 5 min, whereas when using a mixture without Nb, the content of perovskite will be only 58 % vol. at a synthesis time of 12 min. X-ray phase analysis methods confirm the formation of a solid solution (doping) Ca(Ti,Nb)O3, resulting in the preparation of samples (СаТіО3+ТіО2) with resistivity inherent to semiconductors.

Keywords: perovskite, synthesis, XRD, solid solution, doping, semiconductors, conductivity.

References:

  1. Bellaiche, L. and Vanderbilt, D. (2000), Phys. Rev. B, Vol. 61, Iss. 12, pp. 7877-7882. https://doi.org/10.1103/PhysRevB.61.7877
  2. Boutinaud, P., Pinel, E., Dubois, M., Vink, A.P. and Mahiou, R. (2005), J. Lumin., Vol. 111, Iss. 1-2, pp. 69-80. https://doi.org/10.1016/j.jlumin.2004.06.006
  3. Cheng, Z. and Lin, J. (2010), CrystEngComm., Vol. 12, pp. 2646-2662. https://doi.org/10.1039/C001929A
  4. Council, UNDP; UN. WE Energy and the challenge of sustainability, 2000. New York, UNDP, 2000.
  5. Ehsan, M. Ali, Naeem, R., McKee, V., Rehman, A., Hakeem A.S. and Mazhar, M. (2019), J. Mater. Sci.: Mater. Electron., Vol. 30, pp. 1411-1424. https://doi.org/10.1007/s10854-018-0411-4
  6. (2018) Enerdata Global Energy Statistical Yearbook 2018. URL: https://yearbook.enerdata.net/total-energy/world-consumption-statistics.html (Accessed: Septem. 2018).
  7. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Corso, A.D., Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P. and Wentzcovitch, R.M. (2009), J. Phys.: Cond. Matter., Vol. 21, No. 39, 395502 (19 p.). https://doi.org/10.1088/0953-8984/21/39/395502
  8. Godovikov, A.A. (1975), Mineralogy, Nedra, Moscow, 520 p. [in Russian].
  9. Goronovsky, I.T., Nazarenko, Yu.P. and Nekryach, E.F. (1974), Quick guide to chemistry, Nauk. dumka, Kyiv, 992 p. [in Russian].
  10. Gralik, G., Thomsen, A.E., Moraes, C.A., Raupp-Pereira, F. and Hotza, D. (2014), Processing and Application of Ceramics, Vol. 8, No. 2, pp. 53-57. https://doi.org/10.2298/PAC1402053G
  11. Haksung, L., Teruyasu, M., Takahisa, Y. and Yuichi, I. (2009), Materials Transactions, Vol. 50, Iss. 5, pp. 977-983. https://doi.org/10.2320/matertrans.MC200813
  12. Han, C., Liu, J., Yang, W., Wu, Q., Yang, H., Xue, X. and Sol-Gel, J. (2016), Sci. Technol., Vol. 81, pp. 806-813. https://doi.org/10.1007/s10971-016-4261-3
  13. Hohenberg, P. and Kohn, W. (1964), Phys. Rev., Vol. 136, Iss. 3B, pp. 864-871. https://doi.org/10.1103/PhysRev.136.B864
  14. Knunyants, I.L. and Zephirov, N.S. (ch. ed.) (1988), Chemical encyclopedia, Vol. 1, Soviet Encyclopedia Publ. House, Moscow, 623 p. [in Russian].
  15. Krzhizhanovsky, R.E. and Stern, Z.Yu. (1973), Thermophysical properties of non-metallic materials (Oxides), Energia publ., Leningrad, 336 p. [in Russian].
  16. Kulikov, B.F., Zuev, V.V., Vainshenker, I.A. and Mitenkov, G.A. (1985), Mineralogical handbook of the enrichment technologist, Nedra, Leningrad, 264 p. [in Russian].
  17. Li, S., Li, X., Yang, J., Jiang, Q., Lai, H., Tan, Y., Xiao, B. and Xu, T. (2020), J. Power Sources, Vol. 449, 227504. https://doi.org/10.1016/j.jpowsour.2019.227504
  18. Liao, M., Liu, Y. and Mina, L. (2018), Intermetallics, Vol. 101, pp. 152-164. https://doi.org/10.1016/j.intermet.2018.08.003
  19. Liu, G., Yang, B., Chen, H., Zhao, Y., Xie, H., Yuan, Y., Gao, Y. and Zhou, C. (2019), Appl. Phys. Lett., Vol. 115, pp. 213501-1-213501-5. https://doi.org/10.1063/1.5131300
  20. Lozano-Sánchez, L.M., Lee, Soo-Wohn, Sekino, Tohoru and Rodríguez-González, V. (2013), CrystEngComm., Vol. 15, pp. 2359-2362. https://doi.org/10.1039/C3CE27040H
  21. Pavlishin, V.I. and Dovgy, S.O. (2008), Mineralogy, Pidruchnyk, KMT publ., Kyiv, 536 p. [in Ukrainian].
  22. Pavlyshyn, V.I., Voroshylov, Yu.V. and Kvasnytsya, I.V. (2017), Mineralogy, Pidruchnik, VPC Kyiv, Univ. publ., Kyiv, 528 p. [in Ukrainian].
  23. Perdew, J., Burke, K. and Ernzerhof, M. (1996), Phys. Rev. Lett., Vol. 77, Iss. 18, pp. 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
  24. Pereira, S., Figueiredo, A., Barrado, C., Stoppa, M. and Dwivedi, Y. (2015), J. Braz. Chem. Soc., Vol. 26, No. 11, pp. 2339-2345. https://doi.org/10.5935/0103-5053.20150229
  25. Ponomarenko, O.M., Smolyar, A.S., Burkhan, A.O., Maloshtan, S.M., Bloshchanevich, O.M., Stegniy, A.I., Khomenko, B.S. and Titenko, A.M. (2020), Abstracts Int. sci. conf. "Materials for work in extreme conditions - 10" (Dec. 10-11, 2020, Kyiv, Igor Sikorsky Nat. Techn. Univ. "KPI"), IMZ named Ye.O. Paton, Kyiv, pp. 64-66 [in Ukrainian].
  26. (2022) Quantum Espresso website. URL: http: www.quantum-espresso. org/pseudopotentials (Accessed: April. 2022).
  27. Rocha-Rangel, E., López-Hernández, J., Castello-Martínez, J., Osorio-Ramos, J.J., Calles-Arriaga, C.A., Estrada-Guel, I. and Martínez-Sánchez, R. (2018), Arch. Metall. Mater., Vol. 63, No. 4, pp. 1749-1753. https://doi.org/10.24425/amm.2018.125101
  28. Smolyar, A.S., Burkhan, A.O., Bloshchanevich, O.M., Stegniy, A.I., Stepanenko, A.V., Brodnikovsky, M.P. and Titenko, A.M. (2022), Abstracts Int. sci. conf. "Materials for work in extreme conditions - 12" (Dec. 15, 2022, Kyiv, Igor Sikorsky Nat. Techn. Univ. "KPI"), IMZ named Ye.O. Paton, Kyiv, pp. 31-32 [in Ukrainian].
  29. Smolyar, A.S., Burkhan, A.O., Ponomarenko, O.M., Maloshtan, S.M., Khomenko, B.S. and Titenko, A.M. (2019), Abstracts Int. sci. conf. "Materials for work in extreme conditions - 9" (Dec. 18-19, 2019, Kyiv, NTUU "KPI named after Igor Sikorsky"), Kyiv, 2019, pp. 10-13 [in Ukrainian].
  30. Ueda, K., Yanagi, H., Hosono, H., and Kawazoe, H. (1997), Phys. Rev. B, Vol. 56, Iss. 20, pp. 1298-13005. https://doi.org/10.1103/PhysRevB.56.12998 
  31. Voroshilov, Yu.V. and Pavlishin, V.I. (2011), Fundamentals of crystallography and crystal chemistry. X-ray diffraction of crystals, KNT publ., Kyiv, 568 p. [in Russian].
  32. Yang, H., Han, C. and Xue, X. (2014), J. Environ. Sci., Vol. 26, No. 7, pp. 1489-1495. https://doi.org/10.1016/j.jes.2014.05.015
  33. Zeng Pu-jun, Yu Li-ping, Qiu Zhong-xian, Zhang Ji-lin, Rong Chun-ying, Li Cheng-zhi, Fu Zai-hui and Lian Shi-xun (2012), J. Sol. Gel. Sci. Technol., Vol. 64, pp. 315-323. https://doi.org/10.1007/s10971-012-2860-1
  34. Zhang, X., Zhang, J., Ren, X. and Wang, X. (2008), J. Solid State Chemistry, Vol. 181, No. 3, pp. 393-398. https://doi.org/10.1016/j.jssc.2007.11.022
  35. Zhao, H., Duan, Y. and Sun, X. (2013), New J. Chem., Vol. 37, pp. 986-991. https://doi.org/10.1039/C3NJ40974K 

PDF

English