V.P. Semenenko, ELECTRON MICROSCOPIC AND FTIR SPECTROSCOPIC CHARACTERISTICS OF BITUMEN-GRAPHITE INCLUSIONS IN THE KRYMKA METEORITE (LL3.1)

https://doi.org/10.15407/mineraljournal.47.02.033

UDC 523.681

ELECTRON MICROSCOPIC AND FTIR SPECTROSCOPIC CHARACTERISTICS

OF BITUMEN-GRAPHITE INCLUSIONS IN THE KRYMKA METEORITE (LL3.1)

V.P. Semenenko 1, DrSc (Geology), Corresp. Member of NAS of Ukraine, Prof., Head of Department

E-mail: cosmin@i.ua; orcid: 0000-0003-1479-6874

K.O. Shkurenko 1, PhD (Geology), Senior Research Fellow

E-mail: cosmin@i.ua; orcid: 0000-0002-2665-5916

S.P. Starik 2, PhD (Technical), Senior Researcher, Head of the Laboratory

E-mail: s.starik@ukr.net; orcid: 0000-0003-1991-3275

N.V. Kychan 1, PhD (Geology), Senior Research Fellow

E-mail: cosmin@i.ua; orcid: 0000-0002-6793-6538

1 M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine

34, Acad. Palladin Ave., Kyiv, Ukraine, 03142

2 V.М. Bakul Institute for Superhard Materials of the NAS of Ukraine

2, Avtozavodska Str., Kyiv, Ukraine, 04074 

Language: Ukrainian

Mineralogical journal 2025, 47 (2): 33-42

Abstract: The results of electron microscopic, microprobe and spectroscopic studies of bitumen-graphite inclusions in a polyzonal macrochondrule and porphyritic PC xenolith of the Krymka chondrite are given. By the electron microscopic investigation and for the first time FTIR-study of the inclusions directly in polished sections of the meteorite, their belonging to the bitumen occurrences with different degree of graphitization has been proven. The main differences between them are due to association of the inclusions with metal-sulfide mantles in the macrochondrule and with silicates in the xenolith, supersaturation of the bitumen in the macrochondrule with nanometric mineral inclusions and the almost complete absence of pores, which are quite common in the bitumen of the xenolith. It has been clarified direct evidence of graphitization of some bitumen inclusions in the macrochondrule and only probable signs of it in the xenolith. It is assumed that the higher degree of graphitization of bitumen inclusions in macrochondrule than in the PC xenolith is due to the higher degree of their shock-metamorphic transformation in the pre-terrestrial history of the Krymka meteorite.

Keywords: meteorite, chondrite, macrochondrule, xenolith, minerals, inclusions, bitumen, graphite, FTIR-spectra.

References / Література

Bellamy, L.J. (1963), Infrared spectra of complex molecules, Publ. House foreign lit., Moscow, 594 p. [in Russian].

[Беллами, Л.Д. (1963), Инфракрасные спектры сложных молекул. Москва: Изд-во иностр. лит. 594 с.]

Berthelot, P. (1869), Journal für Praktische Chemie, Vol. 108, Iss. 1, pp. 254-256.

https://doi.org/10.1002/prac.18691080129

Berthelot, P. (1868), Sur la matière charbonneuse des météorites. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences 67, 849 р. https://www.biodiversitylibrary.org/page/3719283

Ellerbrock, R., Stein, M. and Schaller, J. (2022), Sci. Rep., Vol. 12, 11708. https://doi.org/10.1038/s41598-022-15882-4

Girich, A.L. and Semenenko, V.P. (2016), Mineral. Journ. (Ukraine), Vol. 38, No. 3, Kyiv, pp. 56-66 [in Ukrainian]. https://doi.org/10.15407/mineraljournal.38.03.056

[Гіріч, А.Л., Семененко, В.П. (2016), Мінерал. журн. 38, № 3. С. 56—66.]

Kanta, U., Thongpool, V., Sangkhun, W., Wongyao, N. and Wootthikanokkhan, J. (2017), Journ. Nanomaterials, Vol. 2017. https://doi.org/10.1155/2017/2758294

Kaplan, I.R., Degens, E.T. and Reuter, J.H. (1963), Geochim. et Cosmochim. acta, Vol. 27, No. 7, pp. 805-808. https://doi.org/10.1016/0016-7037(63)90045-0

Korachantsev, A.V. (2004), Impact transformation of bitumen: Application to organic matter of meteorites and impactites, Abstract diss. of cand. geol. sci., Moscow, 27 p. [in Russian].

[Корачанцев, А.В. (2004), Ударное преобразование битумов: приложение к органическому веществу метеоритов и импактитов: автореф. дис. … канд. геол. наук. Москва. 27 с.]

Semenenko, V.P., Girich, A.L. and Nittler, L.R. (2004), Geochim. et Cosmochim. acta, Vol. 68, Iss. 3, pp. 455-475. https://doi.org/10.1016/S0016-7037(03)00457-5

Semenenko, V.P., Jessberger, E.K., Chaussidon, M., Weber, I., Stephan, T. and Wies, C. (2003), Geochim. et Cosmochim. acta, Vol. 69, Iss. 8, pp. 2165-2182. https://doi.org/10.1016/j.gca.2004.10.027

Semenenko, V.P. and Girich, A.L. (2011), Dopov. Nac. akad. nauk Ukr., No. 11, pp. 107-114 [in Ukrainian].

[Семененко, В.П., Гіріч, А.Л. (2011), Допов. Нац. акад. наук України. № 11. С. 107—114.]

Semenenko, V.P. and Girich, A.L. (2016), Mineral. Journ. (Ukraine), Vol. 38, No. 4, Kyiv, pp. 23-31 [in Ukrainian]. https://doi.org/10.15407/mineraljournal.38.04.023

[Семененко, В.П., Гіріч, А.Л. (2016), Мінерал. журн. 38, № 4. С. 23—31.]

Semenenko, V.P., Girich, A.L. and Shkurenko, K.O. (2022), The unique Krymka meteorite, Nauk. dumka, Kyiv, 222 р. [in Ukrainian].

[Семененко, В.П., Гіріч, А.Л., Шкуренко, К.О. (2022), Унікальний метеорит Кримка. Київ: Наук. думка. 222 с.]

Sun, Z., Duan, X., Srinivasakannanc, C. and Liang, J. (2018), RSC Adv., Vol. 8, 7873. https://doi.org/10.1039/C7RA12848G

Tarasevich, B.N. (2012), IR spectra of the main classes of organic compounds, Reference materials, M.V. Lomonosov Mosc. State Univ., Moscow, 55 p. [in Russian]. URL: https://chembaby.ru/wp-content/uploads/2015/12/Tarasevich_IR_tables_29-02-2012.pdf (Accessed: 29 March 2025).

[Тарасевич, Б.Н. (2012), ИК спектры основных классов органических соединений. Справоч. материалы. Москва: МГУ им. М.В. Ломоносова. 55 с.]

Yuanita, E., Hendrasetyawan, B.E., Firdaus, D.F. and Chalid, M. (2017), IOP Conf. Ser.: Mater. Sci. Eng., Vol. 223, 012028. https://doi.org/10.1088/1757-899X/223/1/012028

 

PDF

English