UDC 549.618: 549.753.1: 548.734.3: 543.422.8: 552.331 



E.E. Grechanovskaya, PhD (Geology), Senior Research Fellow

M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine

34, Acad. Palladin Ave., Kyiv, Ukraine, 03142

E-mail: e.grechanovskaya@gmail.com; ResearcherID: AAC-5285-2020

I.M. Lunova, PhD (Geology), Research Fellow

M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine

34, Acad. Palladin Ave., Kyiv, Ukraine, 03142

E-mail: gerasimetsirina@gmail.com; orcid: 0000-0003-4670-0216 

S.I. Kurylo, PhD (Geology), Research Fellow

Earth Science Institute Slovak Academy of Sciences 

1, Ďumbierska Str., Banska Bystrica, Slovakia, 974 01

E-mail: kurylo.sergiy@gmail.com; orcid: 0000-0003-4466-6851 

V.M. Belskyi, PhD (Geology), Research Fellow

M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine

34, Acad. Palladin Ave., Kyiv, Ukraine, 03142

E-mail: belskyi_vm@ukr.net; orcid: 0000-0001-7990-1386 

Language: Ukrainian

Mineralogical journal 2022, 44 (4): 3-21

Abstract: The structural properties and composition of metamict minerals, namely allanite, chevkinite, and britholite, occurring as inclusions in allanite from feldspar syenites of the Velyka Vyska massif (Korsun-Novomyrgorod pluton, Ukrainian Shield) were investigated by X-ray diffraction and electron probe microanalysis (EPMA). The age of the syenites is 1.7-1.8 Ga, which corresponds to their formation ages within the Ukrainian Shield. X-ray analysis shows that of the original samples of chevkinite and allanite give a broad diffraction peak between 16—28° 2Θ as well as Bragg reflections in the region of the most intense reflections of semimetamict allanite and britholite, indicating the metamict state of chevkinite and the semimetamict state of allanite. The content of radioactive Th found in the chevkinite (0.25-0.33 apfu) is higher compared to its amount in allanite (0.024-0.033 apfu). Calculated unit-cell parameters of the chevkinite and allanite samples showed that their structures underwent significant changes after annealing. There is a slight distortion of the chevkinite unit cell related to a decrease in the a and an increase in b and c edges. A decrease in b and the increase in c in the allanite is caused by a redistribution of cations in the structure and an oxidation of iron, Fe2+ → Fe3+, during heating. Thereby the stability of the allanite structure decreases and it ultimately breaks down. The structural sites A and A2 in chevkinite and allanite are mainly occupied by REEs of the cerium group. The amount of Y is minor. The substitution mechanism А2(REE)3+ + М3М2+ → А2Са2+ + М3М3+(allanite) and M2Fe3+ + M3,4Ti4+↔ M2Fe2+ + M3,4Nb5+ (chevkinite) occur. The M2 site in the structure of chevkinite and M3 in allanite contain more Fe2+ than Fe3+. This leads to a weakening of the bonds in their structures, and a stepwise breakdown and partial or total metamictization of their structures. The britholite inclusions in allanite belong to the Y variety. They were probably formed much later than allanite and chevkinite in the Velyka Vyska massif. According to the EPMA results, namely BSE-images and REE content determinations, allanite and chevkinite formed almost simultaneously.

Keywords: britholite, allanite, chevkinite, metamict state, X-ray analysis, electron probe microanalysis (EPMA), Velyka Vyska massif.


  1. Gerasimets, I.M. (2019), Mineralogy of amorphous substances in alkaline feldspar syenite of the Ukrainian Shield, Abstr. of PhD geol. sci. diss., Kyiv, UA, 25 p. [in Ukrainian].
  2. Grechanivskyi, O.E. (2008), Effect of structure and chemical bonding on the radiation stability of U-, Th-minerals, Abstr. of PhD phys. and mathem. sci. diss., Kharkiv, UA, 20 p. [in Ukrainian].
  3. Grechanivskyi, O.E. (2012), Radiation stability of natural and artificial mineral matrices for long-term and ecologically safe disposal of high-level radioactive waste, Logos, Kyiv, UA, 127 p. [in Ukrainian].
  4. Grechanovska, O.Ye., Gerasimets, I.M., Kryvdik, S.G., Kanunikova, L.I. and Belsky, V.M. (2019), Coll. thesis Sci. conf. "Achievements and prospects for the development of geological science in Ukraine", Kyiv, May 14-16, Vol. 1, pp. 144-146 [in Ukrainian].
  5. Grechanovskaya, E.E., Ilchenko, K.O., Kanunikova, L.I., Kurylo, S.I. and Herasimets, I.N. (2017), Mineral. Journ. (Ukraine), Vol. 39, No. 4, Kyiv, UA, pp. 42-57 [in Ukrainian]. https://doi.org/10.15407/mineraljournal.39.04.042
  6. Kryvdik, S.G. and Bezsmolova, N.V. (2011), Geol. Journ., No. 3, Kyiv, UA, pp. 39-45 [in Ukrainian]. https://doi.org/10.30836/igs.1025-6814.2011.3.139155
  7. Kryvdik, S.G. and Dubyna, O.V. (2012), Geol. Journ., No. 4, Kyiv, UA, pp. 44-56 [in Ukrainian]. https://doi.org/10.30836/igs.1025-6814.2012.4.139205
  8. Kryvdik, S.G., Orsa, V.I. and Bryansky, V.P. (1988), Geol. Journ., No. 6, Kyiv, UA, pp. 43-53 [in Russian].
  9. Lipova, I.M. and Kuznetsova, G.A. (1972), Sov. Atom. Energy, Vol. 32, No. 1, RU, 49 p. [in Russian]. https://doi.org/10.1007/BF01261022
  10. Lipova, I.M., Kuznetsova, G.A. and Makarov, E.S. (1965), Geochem. Int., No. 6, RU, pp. 681-694 [in Russian].
  11. Pyatenko, Yu.A. (1970), Geochem. Int., No. 9, RU, pp. 1077-1083 [in Russian].
  12. Semenov, E.I., Kostyunina, L.P. and Kulakov, M.P. (1967), Mineralogiya pegmatitov i gidrotermalitov shchelochnykh massivov, Nauka, Moscow, RU, 137 p. [in Russian]
  13. Sidorenko, G.A. (1964), Kristallohimiya silikatov so strukturoi tipa apatita. Rentgenografiya mineralnogo sirya, No. 4, Izd-vo Gosgeoltehizdat, Moscow, RU, pp. 39-61 [in Russian].
  14. Hvostova, V.A. (1962), Mineralogiya ortita, Tr. In-ta mineralogii, geohimii i kristallohimii redkih ehlementov, Izd-vo AN SSSR, Vyp. 11, Moscow, RU, 120 p. [in Russian].
  15. Shchapova, Yu.V., Zamyatin, D.A., Vovkotrub, E.G., Strekalovskii, V.N., Neshov, F.G., Ryabuhin, O.V. and Kruzhalov, A.V. (2010), Trudy In-ta geologii i geohimii im. A.N. Zavaritskogo Uralskogo otd. RAN, Vyp. 157, Ekaterinburg, RU, pp. 345-354 [in Russian]
  16. Armbruster, T., Bonazzi, P., Akasaka, M., Bermanec, V., Chopin, C., Gierè, R., Heuss-Assbichler, S., Liebscher, A., Menchetti, S., Pan, Y. and Pasero, M. (2006), Eur. Journ. Mineral., Vol. 18, No. 5, pp. 551-567. https://doi.org/10.1127/0935-1221/2006/0018-0551
  17. Bonatti, S. and Gottardi, G. (1966), Period. di Mineral., Vol. 35, pp. 65-91.
  18. Bonazzi, P. and Menchetti, S. (1994), Amer. Mineral., Vol. 79, No. 11-12, pp. 1176-1184.
  19. Brogger, W.C. (1890), Z. Kristallogr., Vol. 16, pp. 65-69. https://doi.org/10.1126/science.ns-16.391.65-a
  20. Brogger, W.C. (1893), Amorf.: Salmonsens store illustrerede Konversationslexikon, Vol. 1, 742 p.
  21. Ewing, R.C., Meldrum, A., Wang, L., Weber, W.J. and Corrales, L.R. (2003), Reviews in mineral. and geochem., Vol. 53, No. 1, pp. 387-425. https://doi.org/10.2113/0530387
  22. Goldschmidt, V.M. and Tomassen, L. (1925), Geochemische verteilungsgesetze der elemente. Skrifter Norske Videnskaps, Akad., Oslo, No. 3, 58 p.
  23. Gottardi, G. (1960), Amer. Mineral., Vol. 45, pp. 1-14.
  24. Hamberg, A. (1914), Geol. För. Förh, Vol. 36, pp. 31-96. https://doi.org/10.1080/11035891309449550
  25. Hawthorne, F.C., Groat, L.A., Raudsepp, M., Ball, N.A., Kimata, M., Spike, F.D., Gaba, R., Halden, N.M., Lumpkin, G.R., Ewing, R.C., Greegor, R.B., Lytle, F.W., Ercit, T.S., Rossman, G.R., Wicks, F.J., Ramik, R.A., Sherriff, B.L., Fleet, M.E. and McCammon, C.A. (1991), Amer. Mineral., Vol. 76, No. 3-4, pp. 370-396.
  26. Hoshino, M., Kimata, M., Nishida, N., Kyono, A., Shimizu, M. and Takizawa, S. (2005), Mineral. Mag., Vol. 69, No. 4, pp. 403-423. https://doi.org/10.1180/0026461056940259
  27. Ito, J. (1967), Amer. Mineral., Vol. 52, No. 7-8, pp. 1094-1104.
  28. Nagashima, M., Armbruster, T., Akasaka, M., Sano Furukawa, A., Nishio Hamane, D., Malsy, A., Imaoka, T. and Nakashima, K. (2020), Phys. and Chem. of Minerals, Vol. 47, No. 6, pp. 29-47. https://doi.org/10.1007/s00269-020-01096-5
  29. Meldrum, A., Boftner, L.A. and Ewing, R.C. (2000), Mineral. Magaz., Vol. 64, No. 2, pp. 185-194. https://doi.org/10.1180/002646100549283
  30. Noe, D.C., Hughes, J.M., Mariano, A.N., Drexler, J.W. and Kato, A. (1993), Zeitschrift fur Kristallog., Vol. 206, pp. 233-246. https://doi.org/10.1524/zkri.1993.206.Part-2.233
  31. Oberti, R., Ottolini, L., Ventura, G.D. and Parodi, G.C. (2001), Amer. Mineral., Vol. 86, No. 9, pp. 1066-1075. https://doi.org/10.2138/am-2001-8-913
  32. Sokolova, E.V., Hawthorne, F.C., Della Ventura, G. and Kartashov, P.M. (2004), Can. Mineral., Vol. 42, No. 4, pp. 1013-1025. https://doi.org/10.2113/gscanmin.42.4.1013
  33. Stachowicz, M., Welch Mark, D., Bagiński, B., Kartashov, P.M., Macdonald, R. and Woźniak, K. (2019), Amer. Mineral., Vol. 104, No. 10, pp. 1481-1486. https://doi.org/10.2138/am-2019-6458
  34. Trachenko, K., Dove, M.T. and Salje, E.K.H. (2002), Phys. Rev. B., Vol. 65, pp. 1-3. https://doi.org/10.1103/PhysRevB.65.180102
  35. Weber, W.J., Ewing, R.C. and Meldrum, A. (1997), Journ. of Nuclear Mater., Vol. 250, No. 2-3, pp. 147-155. https://doi.org/10.1016/S0022-3115(97)00271-7
  36. Yang, Z., Fleck, M., Smith, M., Tao, K., Song, R. and Zhang, P. (2002), Eur. Journ. of Mineral., Vol. 14, No. 5, pp. 969-975. https://doi.org/10.1127/0935-1221/2002/0014-0969
  37. (2003) International Centre for Diffraction Data, PCPDFWIN, v. 2.4, PDF-2, JCPDS-ICDD. URL: http://www.icdd.com/resources/pdj/pdj18-2.htm (Accessed 9 July 2022).