V. Raks, SAFE AND ECO-FRIENDLY DETERMINATION OF LITHIUM IN SILICATE ORES USING SINTERING AND INDUCTIVELY COUPLED PLASMA OPTICAL EMISSION SPECTROMETRY
https://doi.org/10.15407/mineraljournal.45.04.057
UDC 677.019.543 : 546.34 : 553.493.34
SAFE AND ECO-FRIENDLY DETERMINATION OF LITHIUM
IN SILICATE ORES USING SINTERING AND INDUCTIVELY
COUPLED PLASMA OPTICAL EMISSION SPECTROMETRY
Viktoriia Raks,* DrSc (Chemistry)
Department of Chemical-Physical Process Engineering
E-mail: Victoriia.Raks@k-utec.de; orcid: 0000-0003-4171-3907
Oliver Braun, DrSc (Natural Sciences), Head of Department
E-mail: Oliver.Braun@k-utec.de; orcid: 0009-0008-6761-795X
Bernd Schultheis, DrSc (Natural Sciences), Deputy Head of Department
E-mail: Bernd.Schultheis@k-utec.de; orcid: 0000-0003-2003-9204
Heiner Marx, DrSc (Natural Sciences), Director
E-mail: Heiner.Marx@k-utec.de; orcid: 0009-0004-4753-025X
Markus Pfänder, DrSc (Natural Sciences), Executive Director
E-mail: Markus.Pfaender@k-utec.de; orcid: 0009-0001-6167-950X
K-UTEC AG Salt Technologies
7, Petersenschacht Str., Sondershausen, Germany, 99706
* Correspondence.
Language: English
Mineralogical journal 2023, 45 (4): 57-65
Abstract: We developed new methodologies for the quantitative determination of lithium in lithium-bearing silicate minerals and clays. This research describes direct analysis of Li in powder using an atomic-emission complex for spectrum analysis "PGS-DDP-BAES" and sintering as a sample preparation technique followed by ICP-OES analysis. A new atomic-emission complex for spectrum analysis could be used to efficiently overcome the complex matrix effects, and thus allows for the direct quantitative determination of lithium in solid samples (ores, clays). The relative standard deviation is up to 7.0%. For the extraction of Li from silicate ores and clays by sintering various parameters including sintering temperature, reaction time and additives were studied. The results indicate that the optimal temperature for sintering with NH4Cl and CaCO3 is at around 900°C. Optimum conditions for lithium extraction were found to be 300°C (30 min) and 900°C (60 min), at mass ratios of an ore : NH4Cl : CaCO3 of 1:1:8. In these conditions a lithium extraction degree of 92% is reached. Relative standard deviations for the method with sintering and ICP-OES analysis vary in the interval from 1.7 to 2.2%.
Keywords: silicate ores, clays, pegmatite, lithium, sintering.
References:
- Aylmore, M.G., Merigot, K., Rickard, W.D.A., Evans, N.J., McDonald, B.J., Catovic, E. and Spitalny, P. (2018), Minerals Engineering, Vol. 119, pp. 137-148. https://doi.org/10.1016/j.mineng.2018.01.010
- Barrera, P. (2022), US, Canada and Other Countries Join Forces to Secure Critical Minerals. URL: https://investingnews.com/us-canada-secure-critical-minerals/ (Accessed 15 June 2022).
- Benson, T.R., Coble, M.A., Rytuba, J.J. and Mahood, G.A. (2017), Nature Communications, Vol. 8(1), 270. https://doi.org/10.1038/s41467-017-00234-y
- Choubey, P.K., Kim, M., Srivastava, R.R., Lee, J. and Lee, J.-Y. (2016), Minerals Engineering, Vol. 89, pp. 119-137. https://doi.org/10.1016/j.mineng.2016.01.010
- Christmann, P., Gloaguen, E., Labbé, J.-F., Melleton, J. and Piantone, P. (2015), in Lithium Process Chemistry, Elsevier, pp. 1-40. https://doi.org/10.1016/B978-0-12-801417-2.00001-3
- Dang, H., Wang, B., Chang, Z., Wu, X., Feng, J., Zhou, H., Li, W. and Sun, C. (2018), ACS Sustainable Chemistry & Engineering, Vol. 6(10), pp. 13160-13167. https://doi.org/10.1021/acssuschemeng.8b02713
- Gao, L., Wang, H., Li, J. and Wang, M. (2020), Minerals, Vol. 10(11), article no. 981. https://doi.org/10.3390/min10110981
- Guo, H., Kuang, G., Wan, H., Yang, Y., Yu, H. and Wang, H. (2019), Hydrometallurgy, Vol. 183, pp. 9-19. https://doi.org/10.1016/j.hydromet.2018.10.020
- Guo, H., Kuang, G., Wang, H., Yu, H. and Zhao, X. (2017), Minerals, 7(11), article no. 205. https://doi.org/10.3390/min7110205
- Guo, H., Lv, M., Kuang, G. and Wang, H. (2021), Minerals Engineering, Vol. 174, 107246. https://doi.org/10.1016/j.mineng.2021.107246
- Hu, Z. and Qi, L. (2014), In Treatise on Geochemistry, Elsevier, pp. 87-109. https://doi.org/10.1016/B978-0-08-095975-7.01406-6
- Kim, Y., Han, Y., Kim, S. and Jeon, H.-S. (2021), Process Safety and Environmental Protection, Vol. 148, pp. 765-774. https://doi.org/10.1016/j.psep.2021.02.001
- Krukowska, E. and Patel, T. (2020), EU Aims to Have 30 Million Electric Cars on the Road by 2030. URL: https://www.bloomberg.com/news/articles/2020-12-03/eu-aims-to-have-30-mi... (Accessed 3 Decem. 2020).
- Kuang, G., Liu, Y., Li, H., Xing, S., Li, F. and Guo, H. (2018), Hydrometallurgy, Vol. 177, pp. 49-56. https://doi.org/10.1016/j.hydromet.2018.02.015
- Kudryavtsev, Р.G. and Kudryavtsev, N.P. (2018), Alternative Energy and Ecology (ISJAEE), No. 10-12(258-260), pp. 70-81 [in Russian]. https://doi.org/10.15518/isjaee.2018.10-12.070-081
- Ghulam Yasin (2022), Lithium-Sulfur Batteries, Elsevier, 708 p. https://doi.org/10.1016/C2020-0-04668-2
- Liu, Y., Ma, B., Lv, Y., Wang, C. and Chen, Y. (2022), Minerals Engineering, Vol. 178, 107407. https://doi.org/10.1016/j.mineng.2022.107407
- Meshram, P., Pandey, B.D. and Mankhand, T.R. (2014), Hydrometallurgy, Vol. 150, pp. 192-208. https://doi.org/10.1016/j.hydromet.2014.10.012
- (2018) Metso: Outotec. The Outotec lithium hydroxide process - a novel direct leach process for producing battery-grade lithium hydroxide from spodumene. URL: https://www.mogroup.com/insights/blog/mining-and-metals/the-outotec-lithium-hydroxide-process--a-novel-direct-leach-process-for-producing-battery-grade-lithium-hydroxide-from-spodumene/ (Accessed 11 Decem. 2019).
- (2021) Mineral Commodity Summaries, U.S. Geological Survey, Reston, Virginia, 200 p.
- Pehlken, A., Albach, S. and Vogt, T. (2017), Int. J. Life Cycle Assessment, Vol. 22(1), pp. 40-53. https://doi.org/10.1007/s11367-015-0925-4
- Ponomarev, A.I. (1961), Chemical Analysis Methods for Silicate and Carbonate Rocks, Izd. AN SSSR, Moscow, 414 p. [in Russian].
- Qiu, S., Liu, C. and Yu, J. (2022), Minerals Engineering, Vol. 183, 107599. https://doi.org/10.1016/j.mineng.2022.107599
- Rosales, G.D., Resentera, A.C.J., Gonzalez, J.A., Wuilloud, R.G. and Rodriguez, M.H. (2019), Chemical Engineering Research and Design, Vol. 150, pp. 320-326. https://doi.org/10.1016/j.cherd.2019.08.009
- Rosales, G.D., Ruiz, M. del C. and Rodriguez, M.H. (2014), Hydrometallurgy, Vol. 147-148, pp. 1-6. https://doi.org/10.1016/j.hydromet.2014.04.009
- Rosales, G., Ruiz, M. and Rodriguez, M. (2016), Minerals, Vol. 6(4), article no. 98. https://doi.org/10.3390/min6040098
- Shehzad, K., Zaman, U., Zaman, B.U., Liu, X. and Jafri, R.A. (2022), J. Cleaner Production, Vol. 372, 133689. https://doi.org/10.1016/j.jclepro.2022.133689
- Smith, J.L. (1871), Amer. Journ. Sci., s3-1(4), pp. 269-275. https://doi.org/10.2475/ajs.s3-1.4.269
- Volpi, M., Pirola, C., Rota, G., Nóbrega, J.A. and Carnaroglio, D. (2022), Minerals Engineering, Vol. 187, 107820. https://doi.org/10.1016/j.mineng.2022.107820
- Whitworth, A.J., Forbes, E., Verster, I., Jokovic, V., Awatey, B. and Parbhakar-Fox, A. (2022), Cleaner Engineering and Technology, Vol. 7, 100451. https://doi.org/10.1016/j.clet.2022.100451
- Yelatontsev, D. and Mukhachev, A. (2021), Hydrometallurgy, Vol. 201, 105578. https://doi.org/10.1016/j.hydromet.2021.105578