Kinetics of Hematite to Magnetite Reduction in Carbon Monoxide Atmosphere
UDC 549.5.517.2 + 549.731.13 + 549.057 + 549.08
https://doi.org/10.15407/mineraljournal.39.01.036
PONOMAR V.P., DUDC HENKO N.O., BRIK A.B., OVSIENKO V.V., ALEKSEYTSEV Yu.A., CHEREVKO Yu.I.
M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine
34, Acad. Palladin Av., Kyiv-142, Ukraine, 03680
Е-mail: vitaliyponomar.vp@gmail.com
Language: Ukrainian
Mineralogical journal 2017, 39 (1): 36-45
Abstract:
In this paper, we investigated the possibility of hematite (Kryvyi Rih iron ore basin) reduction to magnetite in the carbon monoxide atmosphere at the temperature range of 300—700 °С and thermal treatment during 10—60 min, and determined the kinetic parameters of this process (reaction rate constant and activation energy). The device for transformation of hematite to magnetite was previously established, and the optimal modes of its work were identified. Prospective raw material for obtaining magnetic phases is waste of mining and beneficiation plants because they contain great amounts of highly disperse iron oxides and hydroxides that make them, practically, man-made deposits of iron minerals. Weakly magnetic iron oxides and hydroxides (goethite, hematite) could be transformed under certain conditions (reduction, temperature, microorganisms, etc.) to strongly magnetic magnetite. The initial sample was represented by rich hematite quartzites, which mainly consist of hematite and quartz traces. It was shown by the method of X-ray diffraction, that hematite reduction during 60 minutes leads to formation of magnetite in the temperature range for 400—600 °С (no peaks of hematite) and magnetite with wustite at 700 °С. It was shown by the method of magnetometry, that saturation magnetisation begins to increase already at 300 °С. Maximum values of saturation magnetization are typical of experiments that were conducted at 500—700 °С during 40 minutes. The increase of the time of thermal treatment up to 50—60 min either does not lead to magnetization change (500—600 °С) or leads to its decreasing (700 °С) due to formation of paramagnetic wustite. Kinetic analysis shows that obtained data are described in the best way by Avrami-Erofeyev equation, under which the reaction rate is limited by the processes of nucleation and nucleus growth. Activation energy of the process was approximately 33 kJ/mol. Obtained results are essential for clarifying the mechanisms of Red-Ox reactions of iron oxides and for improvement and development of the methods of iron ore concentrate production.
Keywords: iron ores, hematite, magnetite, magnetometry, XRD , kinetics of solid-state transformations.
References:
1. Brown, M.E., Dollimore, D. and Galwey, A.K. (1983), Reaction in the solid state, Transl. from Engl., Okhotnikov, A.P. and Chupahin, V.B., Mir, Moscow, RU, 360 p.
2. West, A.R. (1988), Solid state chemistry and its aplication, Moscow, Mir, RU, 547 p.
3. Gershojg, Ju.G. and Turchina, L.P. (1965), Veshchestvennyj sostav i obogatimost’ zheleznykh rud, Sb. nauch. trudov, Vyp. 5, Moscow, RU, pp. 101-112.
4. Gubin, G.V., Bushuev, V.P. and Zharko, L.I. (1967), Obogashchenie i okuskovanie zheleznykh rud, Sb. nauch. trudov, Vyp. 8, Moscow, RU, pp. 155-161.
5. Gubin, G.V., Izmalkov, A.Z., Kucher, V.L., Goncharenko, Ju.I., Lemberskij, V.A., Druz’, E.L., Sokha, S.V., Litovka, A.V. and Baranov, V.G. (1967), Obogashchenie i okuskovanie zheleznykh rud, Sb. nauch. trudov, Vyp. 8, Moscow, RU, pp. 148-161.
6. Gubin, G.V., Shkovyra, G.D. and Igolinskaja, Z.A. (1965), Veshchestvennyj sostav i obogatimost’ zheleznykh rud, Sb. nauch. trudov, Vyp. 5, Moscow, RU, pp. 130-134.
7. Kudryavtseva, G.P. (1988), Ferrimagnetizm prirodnykh oksidov, Nedra, Moscow, RU, 232 p.
8. Ponomarenko, O.M., Brik, A.B., Dudchenko, N.O., Yanyshpol’s’kyy, V.V. and Alekseytsev, Yu.O. (2014), M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of NA S of Ukraine Prystriy dlya ekspresnoho vymiryuvannya namahnichenosti rud ta mahnitnykh materialiv, Pat. No 94163 U, State Register of Patents of Ukraine, Kyiv, UA.
9. Ponomar, V.P., Grechanovskij, A.E., Brik, A.B., Yushin, A.A., Lyutoev, V.P. and Savchenko, T.S. (2015), Mineral. Journ. (Ukraine), Vol. 37, No 2, Kyiv, UA, pp. 37-45. https://doi.org/10.15407/mineraljournal.37.02.037
10. Ponomarenko, O.M., Brik, A.B., Yushin, A.A., Dudchenko, N.A., Evtehov, V.D., Bespoyasko, E.A. and Lyutoev, V.P. (2014), Geol.-mineral. visnyk Krivorizkogo nat. univ., No 1-2 (31-32), Kryvyi Rih, UA, pp. 5-15.
11. Tret’jakov, Ju.D. (1978), Tverdofaznye reakcii, Khimija, Moscow, RU, 360 p.
12. Usenko, A.E., Pan’kov, V.V. and Sobeskij, A.S. (2013), Vestnik BGU, No 3, Ser. 2, Belorussian State Univ., Minsk, Repub. Belorussia, pp. 16-21.
13. Jurov, P.P., Malyj, B.M. and Volochaeva, N.T. (1972), Obogashchenie rud chernykh metalov, Tematicheskij otraslevoj sbornik, No 1, RU, pp. 40-45.
14. Baliarsingh, S.K. and Mishra, B. (2008), Kinetics of iron ore reduction by coal and charcoal: a thesis submitted in partial fulfillment of the requirements for the degree of bachelor of technology in metallurgical and materials engineering, National Institute of Technology, Rourkela, India, 35 p., available at: http://ethesis.nitrkl.ac.in/124/1/10404014.pdf
15. Ding, M., Yang, Y., Wub, B., Wang, T., Ma, L., Xiang, H. and Li, Y. (2011), J. of Molecular Catalysis A: Chemical, Vol. 351, pp. 165-173. https://doi.org/10.1016/j.molcata.2011.10.001
16. Dudchenko, N.O., Brik, A.B. and Ponomar, V.P. (2015), Nanomaterials: Applications & Properties, Proc. of 5-th Intern. conf. 16-23 Sept., Lviv, UA, pp. 01MFPM01-1-01MFPM01-3.
17. Gaviria, J.P., Bohe, A., Pasquevich, A. and Pasquevich, D.M. (2007), Physica B, Vol. 389, pp. 198-201. https://doi.org/10.1016/j.physb.2006.07.056
18. Khawam, A. and Flanagan, D.R. (2006), J. Phys. Chem. B, Vol. 110 (35), pp. 17315-17328. https://doi.org/10.1021/jp062746a
19. Monazam, E.R., Breault, R.W. and Siriwardane, R. (2014), Chem. Eng. J., Vol. 242, pp. 204-210. https://doi.org/10.1016/j.cej.2013.12.040
20. Mondal, K., Lorethova, H., Hippo, E., Wiltowski, T. and Lalvani, S.B. (2004), Fuel Process. Technol., Vol. 86, pp. 33-47. https://doi.org/10.1016/j.fuproc.2003.12.009
21. Moon, I.J. and Rhee, C.H. (1997), Proc. TMS Annual Meeting, 9-13 Feb., Orlando, FL, Minerals Metals and Materials Society, Warrendale, PA, USA, p. 649.
22. Moon, I.J., Rhee, C.H. and Min, D.J. (1998), Steel Research Int., Vol. 69, pp. 302-306. https://doi.org/10.1002/srin.199805555
23. Pang, J., Guo, P., Zhao, P., Cao, C. and Zhang, D. (2009), J. Iron Steel Res. Int., Vol. l6 (5), pp. 07-11. https://doi.org/10.1016/S1006-706X(10)60002-7
24. Pineau, A., Kanari, N. and Gaballah, I. (2006), Thermochim. Acta, Vol. 447, pp. 89-100. https://doi.org/10.1016/j.tca.2005.10.004
25. Sastri, M., Viswanath, R. and Viswanathan, B. (1982), Int. J. Hydrogen Energy, Vol. 7, pp. 951-955. https://doi.org/10.1016/0360-3199(82)90163-X
26. Seaton, C.E., Foster, J.S. and Velasco, J. (1983), Transactions ISIJ, Vol. 23, pp. 490-496.
27. Shimokawabe, M., Furuichi, R. and Ishii, T. (1979), Thermochim. Acta, Vol. 28, pp. 287-305. https://doi.org/10.1016/0040-6031(79)85133-3
28. Tiernan, M.J., Barnes, P.A. and Parkes, G.M.B. (2001), J. Phys. Chem. B., Vol. 105, pp. 220-228. https://doi.org/10.1021/jp003189+