N.O. Kryuchenko, BIOGEOCHEMISTRY OF FLUORINE IN SOILS, WILD BERRIES AND MUSHROOMS OF THE SVYDOVETS MASSIF OF THE CARPATHIAN BIOSPHERE RESERVE

https://doi.org/10.15407/mineraljournal.46.04.071

UDC 550.4 (477.87)

BIOGEOCHEMISTRY OF FLUORINE IN SOILS, WILD BERRIES AND MUSHROOMS

OF THE SVYDOVETS MASSIF OF THE CARPATHIAN BIOSPHERE RESERVE

N.O. Kryuchenko, DrSc (Geology), Prof., Head of Department

E-mail: nataliya.kryuchenko@gmail.com; orcid: 0000-0001-8774-9089

M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine

34, Acad. Palladin Ave., Kyiv, Ukraine, 03142

Language: Ukrainian

Mineralogical journal 2024, 46 (4): 71-80

Abstract: The results of research on the content of water-soluble fluorine in soils, berries of plants of the heather family, and mushroom fruiting bodies are presented. These are plants Vaccínium vítis-idaéa, Oxycoccus, Vaccinium uliginosum, Empetrum nigrum and mushrooms — Leccinum aurantiacum, Leccinum scabrum, Russula Pers., which grow in the mid-mountain zone of the Svydovets massif (Mountain Blyznytsia) of the Carpathian Biosphere Reserve (KBR). Fluoride analyzes were performed using the spectrometric method with alizarin-complexon on a Specol 11 spectrophotometer. It was found that the berries of Vaccínium vítis-idaéa contain 5 times more fluoride than the berries of Empetrum nigrum (14.1 mg/kg and 2.9 mg/kg, respectively), the berries of Vaccinium uliginosum and Oxycoccus have approximately the same content — 10—10.7 mg/kg. In the fruiting bodies of mushrooms, the highest content of fluorine is found in Russula Pers. — 16.1 mg/kg, Leccinum aurantiacum — 11.4 mg/kg, Leccinum scabrum — 8.1 mg/kg. According to the coefficient of biological absorption (Ах — the supply of fluorine from the soil to berries and mushrooms), the following series was revealed (from larger to smaller): the berries of Vaccínium vítis-idaéa are characterized by a strong biological accumulation of fluorine (10—15), the berries of Oxycoccus and Vaccinium uliginosum are weak accumulation (8—12), Empetrum nigrum berries — medium and weak capture (0.2—3); mushrooms — Russula Pers. and Leccinum scabrum have strong accumulation (10—15), Leccinum aurantiacum — weak accumulation (8—11). These series coincide with the fluoride content in berries and mushrooms. That is, the majority of fluorine in the berries and mushrooms of KBR comes from the soil, which allows us to draw conclusions about the purity of atmospheric air in relation to fluorine. Correlations between F and other chemical elements — Ca, Fe, Mg, P, K, Na and H2O, as well as nutrients — mono- and disaccharides (sugar), vitamin C in berries and mushrooms were traced. Common features were revealed: strong (R2 >0.8) negative correlation: F — Ca, F — H2O, F — vitamin C; strong positive relationship: F—P.

Keywords: fluorine, berries, mushrooms, chemical composition, correlations, Mount Blyznytsia.

References / Література

Bhattacharya, P. and Samal, A. (2018), Research Journ. Recent Sci., Vol. 7(4), pp. 36-47. https://www.researchgate.net/publication/324438993

Brown, E. (2017), The Central Sci. (14th Edition) (Mastering Chemistry), p. 1248.

Cooke, J.A., Johnson, M.S. and Davison, A.W. (1976), Environmental Pollution, Vol. 11, Iss. 4, pp. 257-268. https://doi.org/10.1016/0013-9327(76)90066-5

Das, S. and Prakash, B. (2022), Research and Technol. Advances in Food Sci., pp. 269-300. https://doi.org/10.1016/B978-0-12-824369-5.00013-0

Khatsevych, O. (2019), Chemistry and analysis of food products, Publ. Suprun, V.P., Ivano-Frankivsk [in Ukrainian].

[Хацевич, О. (2019), Хімія та аналіз харчових продуктів. Івано-Франківськ: Супрун, В.П.]

Klos, V.R., Birke, M. and Zhovinsky, E.Ya. (2012), Exploration and Ecological Geochemistry, No. 1, Kyiv, рр. 51-67 [in Ukrainian].

[Клос, В.Р., Бірке, М., Жовинський, Е.Я. (2012), Пошукова та екологічна геохімія. № 1. С. 51—67.]

Kryuchenko, N.O. (2001), Exploration and Ecological Geochemistry, No. 1, Kyiv, pp. 9-13 [in Russian].

[Крюченко, Н.О. (2001), Пошукова та екологічна геохімія. № 1. С. 9—13.]

Kryuchenko, N.O., Zhovinsky, E.Ya. and Paparyga, P.S. (2024), Mineral. Journ. (Ukraine), Vol. 46, No. 3, Kyiv, pp. 66-78. https://doi.org/10.15407/mineraljournal.46.03.066

[Крюченко, Н.О., Жовинський, Е.Я., Папарига, П.С. (2024), Мінерал. журн. 46, № 3. С. 66—78.]

Kumar, R., Sinha, R. and Sharma, P. (2021),  Biol. Proc. and Technol. Performance, Vol. 9, No. 2154. https://doi.org/10.3390/pr9122154

Lisoval, A.P. (2001), Methods of agrochemical research, Publ. House Nac. Agrarian Univ., Kyiv [in Ukrainian].

[Лісовал, А.П. (2001), Методи агрохімічних досліджень. Київ: Вид-во Нац. аграр. ун-т.]

Moiseichenko, V.F. and Yeshchenko, V.A. (1994), Basics of research in agrochemistry, Higher School, Kyiv [in Ukrainian].

[Мойсейченко, В.Ф., Єщенко, В.А. (1994), Основи досліджень в агрохімії. Київ: Вища шк.]

Mytskiv, B.V. et al. (2009), State geological map of Ukraine at a scale of 1:200,000, Sheets M-34-XXXVI (Khust), L-34-VI (Baia-Mare), M-35-XXXI (Nadvirna), L-35-I (Visheu-De-Sus), Carpathian series. Explanatory note, UkrDGRI, Kyiv [in Ukrainian].

[Мицьків, Б.В. та ін. (2009), Державна геологічна карта України м-бу 1 : 200 000, аркуші М-34-XXXVI (Хуст), L-34-VI (Бая-Маре), М-35-XXXI (Надвірна), L-35-I (Вішеу-Де-Сус), Карпатська серія. Поясн. записка. Київ: УкрДГРІ.]

Perelman, A.I. (1989), Geochemistry, Higher School, Moscow [in Russian].

[Перельман, А.И. (1989), Геохимия. Москва: Высш. шк.]

Pickering, W.F. (1985), Environmental Pollution Ser. B, Chem. and Physical, Vol. 9, Iss. 4, pp. 281-308. https://doi.org/10.1016/0143-148X(85)90004-7

Ron, F. (2019), Applied Geochemistry, Vol. 100, pp. 393-406. https://doi.org/10.1016/j.apgeochem.2018.12.016

Skaletska, L.F., Podpryatov, G.I. and Zavadska, O.V. (2009), Research methods of plant raw materials, Information Technol. Center, Kyiv [in Ukrainian].

[Скалецька, Л.Ф., Подпрятов, Г.І., Завадська, О.В. (2009), Методи досліджень рослинницької сировини. Київ: Центр інформ. технологій.]

Sukharev, S., Bugyna, L., Pallah, O., Sukhareva, T., Drobnych, V. and Yerem, K. (2020), Heliyon, Vol. 6, Iss. 3, https://doi.org/10.1016/j.heliyon.2020.e03535

Sushchik, Yu.Ya. (1978), Geochemistry of the hypergenesis zone of the Ukrainian Carpathians, Nauk. dumka, Kyiv [in Russian].

[Сущик, Ю.Я. (1978), Геохимия зоны гипергенеза Украинских Карпат. Киев: Наук. думка.]

Tandelov, Yu.P. (1997), Fluorine in the soil-plant system, Moscow St. Univ., Moscow [in Russian].

[Танделов, Ю.П. (1997), Фтор в системе почва — растение. Москва: Моск. гос. ун-т.]

Weinstein, L.H. and Davison, A.W. (2003), Publ. CABI, pp. 21-55. https://doi.org/10.1079/9780851996837.0021

Zhang, J., Yu, L. and Yang, H. (2019), Human and Ecological Risk Assessment: An Int. Journ., Vol. 25, Iss. 4, pp. 1048-1058. https://doi.org/10.1080/10807039.2018.1460577

Zhovinsky, E.Ya. (1979), Geochemistry of fluorine in sedimentary formations of the southwestern East European Platform, Nauk. dumka, Kyiv [in Russian].

[Жовинский, Э.Я. (1979), Геохимия фтора в осадочных формациях юго-запада Восточно-Европейской платформы. Киев: Наук. думка.]

Zhovinsky, E.Ya. and Kuraeva, I.V. (1987), Geochemistry of fluorine (applied value), Nauk. dumka, Kyiv [in Russian].

[Жовинский, Э.Я., Кураева, И.В. (1987), Геохимия фтора (прикладное значение). Киев: Наук. думка.]

 

PDF

English