E.E. Grechanovskaya, CRYSTAL CHEMISTRY OF HIGH-ALUMINUM SCHORLS FROM THE SHEVCHENKIVSKE RARE-METAL DEPOSIT (WESTERN AZOV REGION, UKRAINE)

https://doi.org/10.15407/mineraljournal.47.01.013

UDC 549.612: 543.422.8:548.734.3:548.75 (477)

CRYSTAL CHEMISTRY OF HIGH-ALUMINUM SCHORLS FROM

THE SHEVCHENKIVSKE RARE-METAL DEPOSIT (WESTERN AZOV REGION, UKRAINE)

E.E. Grechanovskaya, PhD (Geology), Senior Research Fellow

E-mail: e.grechanovskaya@gmail.com; orcid: 0009-0000-8496-3637

K.O. Ilchenko, PhD (Geoogy), Senior Research Fellow

E-mail: K_Ilchenko@hotmail.com; orcid: 0000-0003-4456-090X

O.A. Vyshnevskyi, PhD (Geology and Mineralogy), Leading Researcher

E-mail: vyshnevskyy@i.ua; orcid: 0000-0002-7206-2185

I.M. Lunova, PhD (Geology), Research Fellow

E-mail: gerasimetsirina@gmail.com; orcid: 0000-0003-4670-0216

M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine

34, Acad. Palladin Ave., Kyiv, Ukraine, 03142

Language: Ukrainian

Mineralogical journal 2025, 47 (1): 13-32

Abstract: Two generations of tourmaline found in the Shevchenkivske rare-metal deposit (Western Azov region, Ukraine) were investigated by EPMA, XRD and IR spectroscopy analysis. For comparison, the results of previous studies of tourmalines from the nearby Sorokynske pegmatite field and the Airtau ridge (Kazakhstan) were used. Based on the chemical composition, structural and IR spectroscopic characteristics, black tourmalines of the later generation II were identified as schorl and schorl with an alkaline-deficient structure and low aluminum content. The sample from Kazakhstan was identified as schorl with increased magnesium content. Green and greenish-black small tourmaline crystals of the earlier generation I are represented by high-alumina oxy-schorl and schorl with a cation-deficient structure. The formation of oxy-schorl occurs as a result of the isomorphic substitution of Fe2+ by Al3+ according to the scheme XNa+ + YFe2+ → X□ + YAl3+ with the formation of vacancies in the X-position and is accompanied by deprotonation WOH– + YFe2+ = WO2– + YAl3+. As a result of such coupled isomorphic substitutions in the tourmaline structure, the amount of Al3+ increases significantly, while the amount of alkalis in the X position and OH groups in the W- and partially in V-positions, decreases greatly. This leads to the formation of oxy-schorl with a disordered distribution of cations between the Y and Z octahedra, and of OH groups and oxygen atoms between the W and V positions. The formation of high-alumina oxy-schorl from fluide with high-aluminum content is characteristic for the rocks of the Shevchenkivske rare-metal deposit, which contain mullite and sillimanite that was detected as inclusions in the green grains of schorl of the generation I. The formation of schorls of the later generation II took place from an environment comparatively depleted in Al. The existence of tourmalines of the oxy-schorl — alkali-deficient schorl — schorl series in the rocks of the Shevchenkivske deposit is the result of the gradual formation of its rocks from fluides, the composition of which changed from high to low alumina content and increasing in ferrum and alkalis. The Shevchenkivske schorls and oxy-schorls differ from tourmaline from the Sorokynske field, which, due to the large number of vacancies in the X position, falls into the foitite field, and according to other features of the structure, it is close to alkali-deficient schorl and was diagnosed as alkali-deficient schorl. Oxy-schorl, the member of tourmaline oxy-subgroup, was found in Ukraine for the first time.

Keywords: oxy-schorl, alkali-deficient schorl, XRD analysis, IR spectroscopy, Shevchenkivske deposit.

References / Література

Afonina, G.G. and Makagon, V.M. (1990), Mineral. Journ. (Ukraine), Vol. 12, No. 5, Kyiv, pp. 19-24 [in Russian].

[Афонина, Г.Г., Макагон, В.М. (1990), Минерал. журн. 12, № 5. C. 19—24.]

Bačik, P. (2015), Can. Mineral., Vol. 53, No. 3, pp. 571-590. https://doi.org/10.3749/canmin.1400073

Bačík, P., Cempírek, J., Uher, P., Novák, M., Ozdín, D., Filip, J., Škoda, R., Breiter, K., Klementová, M., Ďuda, R. and Groat, L.A. (2013), Amer. Mineral., Vol. 98, Iss. 2-3, pp. 485-492. https://doi.org/10.2138/am.2013.4293

Bašik, P., Uher, P., Sýkora, M. and Lipka, J. (2008), Can. Mineral., Vol. 46, pp. 1117-1129. https://doi.org/10.3749/canmin.46.5.1117

Berrymann, E.J., Wunder, B., Ertl, A., Koch-Muller, M., Rhede, D., Scheidl, K., Giester, G. and Heinrich, W. (2016), Phys. Chem. Minerals, Vol. 43, pp. 83-102. https://doi.org/10.1007/s00269-015-0776-3

Bosi, F. (2018), Amer. Mineral., Vol. 103, Iss. 2, pp. 298-306. https://doi.org/10.2138/am-2018-6289

Bosi, F., Skogby, H. and Halenius, U. (2017), Eur. J. Mineral., Vol. 29, No. 5, pp. 889-896. https://doi.org/10.1127/ejm/2017/0029-2631

Bosi, F., Skogby, H., Agrosy, G. and Scandale, E. (2012), Amer. Mineral., Vol. 97, No. 5-6, pp. 989-994. https://doi.org/10.2138/am.2012.4019

Bosi, F. (2011), Can. Mineral., Vol. 49, No. 1, pp. 17-27. https://doi.org/10.3749/canmin.49.1.17

Bugaenko, L.T., Ryabykh, S.M. and Bugaenko, A.L. (2008), Moscow Univ. Chem. Bull., Vol. 63, pp. 303-317. https://doi.org/10.3103/S0027131408060011

Castañeda, C., Oliveira, E.F., Gomes, N. and Soares, A.C.P. (2000), Amer. Mineral., Vol. 85, No. 10, pp. 1503-1507. https://doi.org/10.2138/am-2000-1021

Ertl, A., Hughes, J.M., Pertlik, F., Foit, F.F., Wright, S.E., Brandstätter, F. and Marler, B. (2002), Can. Mineral., Vol. 40, No. 1, pp. 153-162. https://doi.org/10.2113/gscanmin.40.1.153

Fantini, C., Tavares, M.C., Krambrock, K., Moreira, R.L. and Righi, A. (2014), Phys. Chem. Mineral., Vol. 41, pp. 247-254. https://doi.org/10.1007/s00269-013-0642-0

Foit, F.F. (1989), Amer. Mineral., Vol. 74, pp. 422-431.

Foit, F.F. and Rosenberg, P.F. (1977), Contrib. Mineral. Petrol., Vol. 62, pp. 109-127. https://doi.org/10.1007/BF00372871

Francis, C.A., Dyar, M.D., Williams, M.L. and Hughes, J.M. (1999), Can. Mineral., Vol. 37, No. 6, pp. 1431-1438.

Gatta, G.D., Bosi, F., McIntyre, G.J. and Skogby, H. (2014), Mineral. Mag., Vol. 78, No. 3, pp. 681-692. https://doi.org/10.1180/minmag.2014.078.3.15

Gonzalez-Careño, T., Fernandez, M. and Sanz, J. (1988), Phys. Chem. Mineral., Vol. 15, pp. 452-460. https://doi.org/10.1007/BF00311124

Gorskaya, M.G., Frank-Kamenetskaya, O.V. and Frank-Kamenetskiy, V.A. (1989), In: Metody difraktsionnykh issledovaniy kristallicheskogo materiala, Nauka, Novosibirsk, pp. 119-130 [in Russian].

[Горская, М.Г., Франк-Каменецкая, О.В., Франк-Каменецкий, В.А. (1989), кн.: Методы дифракционных исследований кристаллического материала. Новосибирск: Наука, Сиб. отд. С. 119—130.]

Grechanovskaya, E.E., Ilchenko, E.A., Vishnevskyi, A.A., Garaschenko, V.V. and Herasimets, I.N. (2020), Precambrian: rock association and their ore mineralization, Abstracts Int. Sci. Conf., Kyiv, Septem. 22-24, 2020, Kyiv, pp. 54-57 [in Russian].

[Гречановская, Е.Е., Ильченко, Е.А., Вишневский, А.А., Гаращенко, В.В., Герасимец, И.Н. (2020), Докембрій: породні асоціації та їхня рудоносність: Зб. тез Міжнар. наук. конф. Київ, 22—24 верес. 2020 р. С. 54—57.]

Hawthorne, F.C. and Henry, D.J. (1999), Eur. J. Mineral., Vol. 11, No. 2, pp. 201-216. https://doi.org/10.1127/ejm/11/2/0201

Henry, D., Novák, M., Hawthorne, F.C., Ertl, A., Dutrow, B., Uher, P. and Pezzotta, F. (2011), Amer. Mineral., Vol. 96, pp. 895-913. http://doi.org/10.2138/am.2011.3636

Henry, D.J. and Dutrow, B.L. (2001), Amer. Mineral., Vol. 86, Iss. 10, pp. 1130-1142. https://doi.org/10.2138/am-2001-1002

Ilchenko, K.O., Grechanovskaya, O.E., Ivanytskyi, V.P. and Garaschenko, V.V. (2019), Achievements and prospects of development of geological science in Ukraine, Abstracts Sci. Conf. devoted to the 50th anniversary IGMOF of NAS of Ukraine, May 14-16, 2019, Vol. 1, Kyiv, pp. 163-166 [in Ukrainian].

[Ільченко, К.О., Гречановська, О.Є., Іваницький, В.П., Гаращенко, В.В. (2019), Здобутки і перспективи розвитку геологічної науки в Україні: Зб. тез наук. конф., присв. 50-річчю ІГМР НАН України, 1416 трав. 2019 р., Т. 1, Київ. С. 163—166.]

Ilchenko, K., Hrechanovska, O., Naumenko, Ye. and Staryk, S. (2018), Mineral. Coll., No. 68, Iss. 1, Lviv, pp. 89-93 [in Ukrainian]. https://journals.lnu.lviv.ua/index.php/mineralogy/article/view/229

[Ільченко, К., Гречановська, О., Науменко, Є., Старик, С. (2018), Мінерал. зб. № 68, Вип. 1. С. 89—93.]

Isakov, L.V. and Bobrov, O.B. (2000), Mineral. Resources Ukraine, No. 1, Kyiv, pp. 23-30 [in Ukrainian].

[Ісаков, Л.В., Бобров, О.Б. (2000), Мінерал. ресурси України. № 1. С. 23—30.]

Ivanytskyi, V., Grechanovska, O., Bryk, O., Polshyn, E. and Galaburda, Yu. (2014), Mineral. Coll., No. 64, Iss. 1, Lviv, pp. 90-102 [in Ukrainian].

[Іваницький, В., Гречановська, О., Брик, О., Польшин, Е., Галабурда, Ю. (2014), Мінерал. зб. № 64, Вип. 1. С. 90—102.]

(2003), JCPDS International Centre for Diffraction Data, PCPDFWIN v. 2.4, PDF-2. Copyright© JCPDS-ICDD.

Kichurchak, V.M. (1988), Zakonomernosti lokalizatsii, stroeniya i proishozhdeniya pegmatitov v odnom iz rayonov Ukrainskogo shchita, Autoref. PhD. diss. of geol.-min. sci., Kyiv, 14 p. [in Russian].

[Кичурчак, В.М. (1988), Закономерности локализации, строения и происхождения пегматитов в одном из районов Украинского щита: автореф. дис. … канд. геол.-мин. наук. Киев. 14 с.]

Lafuente, B., Downs, R., Yang, H. and Stone, N. (2016), 1. The power of databases: The RRUFF project, in Armbruster, T. and Danisi, R. (eds), From the book Highlights in Mineralogical Crystallography, Berlin, München, Boston: De Gruyter (O), pp. 1-30. https://doi.org/10.1515/9783110417104-003

Leissner, L., Schlüter, J., Horn, I. and Mihailova, B. (2015), Amer. Mineral., Vol. 100, No. 11-12, pp. 2682-2694. https://doi.org/10.2138/am-2015-5323

London, D. (2011), Can. Mineral., Vol. 49, No. 1, pp. 117-136. http://doi.org/10.3749/canmin.49.1.117

London, D., Morgan, G. and Wolf, M. (1996), in Boron: Mineralogy, Petrology and Geochemistry, in Anovitz, L. and Grew, E. (eds), Berlin, Boston: De Gruyter, pp. 299-330. https://doi.org/10.1515/9781501509223-009

Lytovchenko, E.I. (1976), Granitic pegmatites of the Western Azov region, Nauk. dumka, Kyiv, 130 p. [in Russian].

[Литовченко, Е.И. (1976), Гранитные пегматиты Западного Приазовья. Киев: Наук. думка. 130 с.]

MacDonald, D.J., Hawthorne, F.C. and Grice, J.D. (1993), Amer. Mineral., Vol. 78, pp. 1299-1303.

Martìnez-Alonso, S., Rustad, J. and Goetz, A. (2002), Amer. Mineral., Vol. 87, No. 8-9, pp. 1224-1234. https://doi.org/10.2138/am-2002-8-922

Novák, M., Povondra, P. and Selway, J.B. (2004), Eur. J. Mineral., Vol. 16, No. 2, pp. 323-333. http://doi.org/10.1127/0935-1221/2004/0016-0323

Pezzotta, F., Hawthorne, F.C., Cooper, M.A. and Teertstra, D.K. (1996), Can. Mineral., Vol. 34, No. 4, pp. 74l-744.

Plyusnina, I.I. (1976), Infrakrasnye spektry mineralov, Publ. house Moscow State Univ., Moscow, 175 p. [in Russian].

[Плюснина, И.И. (1976), Инфракрасные спектры минералов. Москва: Изд-во Моск. гос. ун-т. 175 с.]

Reddy, B.J., Frost, R.L., Martens, W.N., Wain, D.L. and Kloprogge, J.T. (2007), Vibrational Spectroscopy, Vol. 44, No. 1, pp. 42-49. https://doi.org/10.1016/j.vibspec.2006.07.010

Robert, J.L., Fuches, Y. and Gourdant, J.P. (1996), Phys. Chem. Minerals, Vol. 23, 309 p. https://doi.org/10.1007/BF00207782

Selway, J.B., Smeds, Sten-Anders, Černý, P. and Hawthorne, F.C. (2002), GFF, Vol. 124, No. 2, pp. 93-102. http://doi.org/10.1080/11035890201242093

Selway, J.B., Novák, M., Černý, P. and Hawthorne, F.C. (1999), Eur. J. Mineral., Vol. 11, No. 3, pp. 569-584. http://doi.org/10.1127/ejm/11/3/0569

Watenphul, A., Burgdorf, M., Schlüter, J., Horn, I., Malcherek, T. and Mihailova, B. (2016), Amer. Mineral., Vol. 101, No. 4, pp. 970-985. https://doi.org/10.2138/am-2016-5530

Yavus, F., Çelic, M. and Karakaya, N. (1999), Can. Mineral., Vol. 37, pp. 155-161.

Zagorskiy, V.E., Peretyazhko, I.S. and Shmakin, B.M. (1999), Granite pegmatites, Vol. 3. Miarolitic pegmatites. Novosibirsk, Nauka, 487 p. [in Russian].

[Загорский, В.Е., Перетяжко, И.С., Шмакин, Б.М. (1999), Гранитные пегматиты. Миароловые пегматиты. Т. 3. Новосибирск: Наука. 487 с.]

 

PDF

English