I.A. Tagayev, COMPARATIVE CHARACTERISTICS OF THE MINERALOGICAL COMPOSITION OF OLD IRRIGATED SOILS OF NAVOI AND STEPPE SOILS OF THE KANIMEKH DISTRICT OF NAVOI REGION (UZBEKISTAN)
https://doi.org/10.15407/mineraljournal.47.03.080
UDC 631.48
COMPARATIVE CHARACTERISTICS OF THE MINERALOGICAL
COMPOSITION OF OLD IRRIGATED SOILS OF NAVOI AND
STEPPE SOILS OF THE KANIMEKH DISTRICT OF NAVOI REGION (UZBEKISTAN)
Ilkhom A. Tagayev, PhD
E-mail: ilhomtagayev58@gmail.com; orcid: 0000-0002-4268-7336
Navoi Innovation University
39, Tashkent Str., Karmana, Navoi Region, Uzbekistan, 210100
Lyudmyla S. Andriyko, PhD (Chemistry), Senior Research Fellow
E-mail: andriykolyuda@gmail.com; orcid: 0000-0001-5558-5374
Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
17, Oleg Mudrak Str., Kyiv, Ukraine, 03164
Language: English
Mineralogical journal 2025, 47 (3): 80-91
Abstract: Soil salinization has become a critical environmental challenge in arid regions of Uzbekistan, particularly in areas adjacent to the former Aral Sea. While most mitigation efforts focus on irrigated agricultural lands, rainfed soils remain under-investigated despite their vulnerability to secondary salinization and degradation caused by climate change and increased solar insolation. Therefore, this study focused on identifying the predominant types of soil salinity and assessing the solubility of soil-forming minerals in water and acidic extracts, as well as approximately evaluating the degradation status of the soil system for timely intervention and sustainable land management. Soil samples from Navoi city and rainfed lands of the Kanimekh district (28 km northwest of Navoi) were analyzed using photoelectrocolorimetry, refractometry, flame photometry, X-ray diffraction, Fourier-transform infrared spectroscopy, and chemical analysis. It was found that carbonate salinity was predominant at both sites, with total carbonate mineral content ranging from 6.4% to 9.4%. In the saline soil of Kanimekh, sulfate salinity reached 11.8%, compared to 0.4% in normal soils, driven by the presence of gypsum, astrakhanite, and thenardite. Additionally, a minor chloride salinity component (0.4%) — represented by halite — was found only in the saline samples. The revealed carbonate, sulfate, and chloride salinity types highlight the complexity of soil salinization processes in arid zones. These findings underscore the need for regular mineralogical monitoring of soil for effective agriculture, mitigating land degradation in vulnerable regions.
Keywords: irrigated and rainfed soils; mineralogical composition; types of soil salinity.
References / Література
Akhmedov, A.U., Karimov, Kh.N., Artikov, Kh.T., Parpiev, G.T., Turdaliev, Zh.M. and Myrzambetov, A.B. (2018), Biological Sciences, Vol. 3, pp. 5-11 [in Russian]. URL: https://science-biology.ru/ru/article/view?id=1101 (Accessed: 15.07.2025).
[Ахмедов, А.У., Каримов, Х.Н., Артиков, Х.Т., Парпиев, Г.Т., Турдалиев, Ж.М., Мырзамбетов, А.Б. (2018), Биологические науки. Вып. 3. C. 5—11.]
Alikulov, B., Shurigin, V., Davranov, K. and Ismailov, Z. (2022), Plant Science Today, Vol. 8(sp1), pp. 44-50. https://doi.org/10.14719/pst.1605
Chhabra, R. (2004), Arid Land Research and Management, Vol. 19, Iss. 1, pp. 61-79. https://doi.org/10.1080/15324980590887344
(1970), Classification of the Steppe by the Mineralization of Ground Water, Kolos Publ., Moscow [in Russian].
[(1970), Классификация степей по минерализации грунтовых вод. Москва: Колос.]
Derakhshan-Nejad, Z., Lee, W., Han, S., Choi, J., Yun, S. and Lee, G. (2020), J. Soils Sediments, Vol. 20, pp. 2107-2120. https://doi.org/10.1007/s11368-020-02585-4
Dixon, J.B. and Sholtze, D.G. (ed.) (2002), Soil Mineralogy with Environmental Application. Madison, Wisconsin, USA, 886 p.
Doebelin, N. and Kleeberg, R. (2015), J. Appl. Crystall., Vol. 48, No. 5, pp. 1573-1580. https://doi.org/10.1107/S1600576715014685
Dou, X., Ma, X., Zhao, C., Li, J., Yan, Y. and Zhu, J. (2022), CATENA, Vol. 212, 106056. https://doi.org/10.1016/j.catena.2022.106056
(1985), FAO. Guidelines for soil description (4th ed.). Rome: Food and Agriculture Organization of the United Nations.
Gomiero, T. (2016), Sustainability, Vol. 8, p. 281. https://doi.org/10.3390/su8030281
van Hoorn, J.W. and van Alphen, J.G. (2006), Salinity control, in: Ritzema, H.P. (ed.), Drainage Principles and Applications, pp. 533-600, Publ. 16, Int. In-te for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands.
(2015), IUSS Working Group WRB, World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports, No. 106. FAO, Rome.
Jurakulov, B., Tagaev, I., Alikulov, B., Axanbayev, S., Akramov, I. and Ismailov, Z. (2023), Plant Sci. Today, Vol. 10, No. 2, pp. 170-177. https://doi.org/10.14719/pst.2062
Khamraliev, A., Mamatkulov, Z., Musaev, I., Saipova, B., Oymatov, R. and Mirjalolov, N. (2023), Vol. 386, Annual Int. Sci. Conf.: GIS in Central Asia - GISCA 2022 and Geoinformatics - GI 2022 "Designing the Geospatial Ecosystem". https://doi.org/10.1051/e3sconf/202338601010
Khasanov, S.; Li, F.; Kulmatov, R.; Zhang, Q.; Qiao, Yu.; Odilov, S.; Yu, P.; Leng, P.; Hirwa, H.; Tian, Ch.; Yang, G.; Liu, H. and Akhmatov, D. (2022), Agricult. Water Management., Vol. 263, 107444. https://doi.org/10.1016/j.agwat.2021.107444
Kholdorov, Sh., Jabbarov, Z. and Shamsiddinov, T. (2023), Soil Security, Vol. 13, 100105. https://doi.org/10.1016/j.soisec.2023.100105
Koriyev, M., Mirzahmedov, I., Boymirzaev, K. and Juraev, Z. (2025), Cogent Food and Agriculture, Vol. 11(1). https://doi.org/10.1080/23311932.2024.2449201
Koriyev, M.R., Fonseka, P.U., Umurzakova, U.N., Rozumbetov, K.U., Arachchi, S., Erkudov, V.O., Mehta, D. and Rathnayake, U. (2024), Suranaree J. Sci. and Technol., Vol. 31(5), pp. 1-15, Art. 010335. https://doi.org/10.55766/sujst-2024-05-e05652
Kuziev, R.K., Gafurova, L.A. and Abdrakhmonov, T.A. (2016), Ch. 4: Soil resources of Uzbekistan and the issues of food security, in: Land Resources and Food Security of Central Asia and Southern Caucasus, Publ.: FAO, 418 p.
[Кузиев, Р.К., Гафурова, Л.А., Абдрахмонов, Т.А. (2016), Гл. 4. Почвенные ресурсы Узбекистана и вопросы продовольственной безопасности. Сб.: Земельные ресурсы и продовольственная безопасность Центральной Азии и Закавказья. ФAO. 418 с.]
(1976) Metody agrohimicheskikh analizov pochv. Opredelenie khimicheskogo sostava vodnykh vytyazhek i sostava gruntovykh vod dlya zasolennykh pochv, OST 46-52-76/1976, N 173, 10 p. [in Russian].
[(1976) Методы агрохимических анализов почв. Определение химического состава водных вытяжек и состава грунтовых вод для засоленных почв. Отраслевой стандарт ОСТ 46-52-76/1976 г. № 173. 10 c.]
Nakamoto, K. (1991), IK spektry i spektry KR neorganicheskikh i koordinatsionnykh soedineniy, Mir, Moscow, 536 p. [in Russian].
[Накамото, К. (1991), ИК спектры и спектры КР неорганических и координационных соединений. Москва: Мир. 536 с.]
Omonov, A., Kato, T., Khasanov, S., Fitriyah, A., Li F., Musayev, S., Pulatov, B. and Ismoilov, Z. (2024), Remote Sensing Applications: Society and Environment, Vol. 35, 101214. https://doi.org/10.1016/j.rsase.2024.101214
Qadir, M., Noble, A.D., Schubert, S., Thomas, R.J. and Arslan, A. (2006), Land Degradation and Development, Vol. 17(6), pp. 661-676. https://doi.org/10.1002/ldr.751
(2022) Pochva v Uzbekistane: svoystva, vidy, raspredelenie, July, 26, 2022 [in Russian]. URL: https://www.agro.uz/ru/11-0297/ (Accessed: 15.07.2025).
[(2022) Почва в Узбекистане: свойства, виды, распределение. Июль, 26. 2022]
(1992) Pochvy. Opredelenie podvizhnykh soedinenii fosfora i kaliya po metodu Kirsanova v modifikatsii TSINAO by CINAO, (GOST 26207-91), Publ. House of Standards, 7 p. [in Russian].
[(1992) Почвы. Определение подвижных соединений фосфора и калия по методу Кирсанова в модификации ЦИНАО. ГОСТ 26207-91. Изд-во стандартов. 7 с.]
(1996) Pochvy. Metody opredeleniya kaltsiya i magniya v vodnoy vytjazhke, (GOST 26428-85), 8 p. [in Russian].
[(1996) Почвы. Методы определения кальция и магния в водной вытяжке. ГОСТ 26428-85. 8 с.]
(1996) Pochvy. Metody opredeleniya iona khlorida v vodnoy vytjazhke, (GOST 26425-85), 9 p. [in Russian].
[(1996) Почвы. Методы определения иона хлорида в водной вытяжке. ГОСТ 26425-85. 9 с.]
(1996) Pochvy. Metody opredeleniya iona sulfata v vodnoy vytjazhke, (GOST 26426-85), 9 p. [in Russian].
[(1996) Почвы. Методы определения иона сульфата в водной вытяжке. ГОСТ 26426-85. 9 с.]
Rakhmatullaev, A. and Rakhmatullaev, Sh. (2015), J. Arid Land Studies, Vol. 25(3), pp. 261-264.
Rengasamy, P. (2006), J. Experimental Botany, Vol. 57, No. 5, pp. 1017-1023. https://doi.org/10.1093/jxb/erj108
Richards, L.A. (ed.) (1954), Diagnosis and improvement of saline and alkali soils, USDA Agricultural Handbook 60.
(1990) Sbor prob. Pochvy. Vyborка. Data vvedeniya 01.04.1990, (GOST-28168-89), 6 p. [in Russian].
[(1990) Сбор проб. Почвы. Выборка. Дата введения 01.04.1990. ГОСТ-28168-89. 6 c.]
Shirokova, Yu., Paluashova, G., Kodirov, D. and Sadiev, F. (2024), E3S Web Conf., Int. Conf. on Ensuring Sustainable Development: Ecology, Energy, Earth Sci. and Agriculture (AEES2023), Vol. 494 02002. https://doi.org/10.1051/e3sconf/202449402002
Shodiev, S.R. and Chembarisov, E.I. (2021), Central Asian Journ. Geograph. Resear., No. 3-4, pp. 87-96 [in Russian].
[Шодиев, С.Р., Чембарисов, Э.И. (2021), Центральноаз. журн. географ. исследов. № 3—4. С. 87—96.]
Shokri, N., Hassani, A. and Sahimi, M. (2024), Rews Geophys., Vol. 62, Iss. 4, e2023RG000804. https://doi.org/10.1029/2023RG000804
Singh, V. and Agrawal, H.M. (2012), Radiation Physics and Chem., Vol. 81, No. 12, pp. 1796-1803. https://doi.org/10.1016/j.radphyschem.2012.07.002
Tajiev, S.M. and Uktamov, D.A. (2018), Universum: technical sciences: Electron. Sci. Journ., Vol. 8, No. 53 [in Russian].
[Таджиев, С.М., Уктамов, Д.А. (2018), Universum: технические науки: Электрон. научн. журн. Вып. 8 (53).]
Tarolli, P., Luo, J., Park, E., Barcaccia, G. and Masin, R. (2024), iScience, Vol. 27, No. 2, 108830. https://doi.org/10.1016/j.isci.2024.108830
Tikhonenko, D.G. (2010), Bull. HNAU named V.V. Dokuchaev. Soil science, agrochemistry, agriculture, forestry, soil ecology, Iss. 5, Kharkiv, pp. 5-10 [in Ukrainian].
[Тихоненко, Д.Г. (2010), Вісн. ХНАУ ім. В.В. Докучаєва. Сер. Ґрунтознавство, агрохімія, землеробство, лісове господарство, екологія ґрунтів. Харків. Вип. 5. С. 5—10.]
Turaev, T. (2021), Soil science and agrochemistry, Iss. 4, pp. 25-32 [in Russian].
[Тураев, Т. (2021), Почвоведение и агрохимия. Вып. 4. С. 25—32.]
Yudina, A.V. and Milanovsky, E.Yu. (2017), Bull. Soil In-t named V.V. Dokuchaev, Iss. 89, pp. 3-20 [in Russian].
[Юдина, А.В., Милановский, Е.Ю. (2017), Бюлл. Почв. ин-та им. В.В. Докучаева. Вып. 89. С. 3—20.]
Wang, L.; Hu, P.; Zheng, H.; Bai, J.; Liu, Y.; Hellwich, O.; Liu, T.; Chen, X. and Bao, A. (2025), Remote Sensing, Vol. 17(6), 987. https://doi.org/10.3390/rs17060987