Tritium Indicator of Effectiveness of Thermomodification of Adsorption Properties of Clinoptilolite

UDC 549.67 : 54-116 : 54.027
https://doi.org/10.15407/mineraljournal.39.02.064

I.M. Rudenko (1), O.V. Pushkar’ov (1), V.Vik. Dolin (1), O.V. Zubko (1), E.E. Grechanovskaya (2)
(1) SE "Institute of environmental Geochemistry of the NAS of Ukraine"
34a, acad. Palladin av., Kyiv, Ukraine, 03680
E-mail: Irina_mihalovna@ukr.net
(2) M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine
34, Acad. Palladin Av., Kyiv-142, Ukraine, 03680
Language: Ukrainian
Mineralogical journal 2017, 39 (2): 64-74
Abstract: The possibility of thermomodification of adsorption properties of clinoptilolite of the Sokyrnitsya deposit (Ukraine) is estimated by experimental studies using a tritium indicator. The 10monthn long experiments were performed in closed stationary systems with unchanged natural clinoptilolite and a similar mineral, but thermally treated at a temperature of 110 °C. Under these conditions, all tritium was in closed experimental systems, which provided an opportunity to obtain balance estimates of the tritium distribution between the liquid phase and various structural positions of the mineral. It is shown that fractionation of hydrogen isotopes occurs in this case. The specific features of the accumulation of tritium in the structure of the zeolite are determined. It has been established that the thermal treatment of clinoptilolite contributes to an increase in tritium accumulation in a superficially adsorbed form, but it somewhat reduces its occurrence and fixation in the mineral channels. The channel and surface adsorbed forms of occurrence form the main part of tritium absorbed by the mineral. The heat treatment practically does not affect the adsorption capacity of the structurally related form of the occurrence.
Keywords: clinoptilolite, thermomodification, adsorption, tritium, fractionation, isotopes of hydrogen.
References:
1. Grechanovskaya, E.E. (2010), Mineral. Journ. (Ukraine), Vol. 32, no 4, kyiv, ua, pp. 12-22.
2. Grechanovskaya, E.E. and Mel’nikov, V.S. (2005). Mineralogicheskie muzei, St.Petersburg Gos. univ. Publ. house, St.Petersburg, ru, pp. 243-244.
3. Deer, W.A., Howie, R.A. and Zussman, J. (1966), Porodoobrazuyushchie mineraly, in 5 vol., Vol. 3, Mir, Moscow, ru, 317 p.
4. Dolіn, V.V., Pushkar’ov, O.V., Shramenko, І.F., Bobkov, V.M., Ishchuk, O.O., Orlov, O.O., Dikaryev, O.O., Kovalyukh, M.M., Skrypkin, V.V., Hlavats’ka, O.V., Pryimachenko, V.M., Dolin, V.V. (mol.), Stetsenko, D.O., Tyutyunyk, S.Yu., Korotkykh, D.I., Shevchenko, O.l. and Yakovlyev, Ye.O. (2012), Tritіy v bіosferі, nauk. dumka, Kyiv, ua, 224 p.
5. Kukushkin, Yu.N. (1981), Ligandy koordinacionnyh soedineniy, Izdvo leningrad. tehnol. Inta im. lensoveta, leningrad, ru, 74 p.
6. MakBen, Dzh. (1934), Sorbciya gazov i parov tverdymi telami, Goshimizdat, Moscow, leningrad, ru, 397 p.
7. Nesmeyanov, An.N. (1972), Radiohimiya, himiya, Moscow, ru, 591 p.
8. Pospelov, G.l. (1973), Paradoksy, geologo-fizicheskaya sushchnost’i mehanizmy metasomatoza, nauka, novosibirsk, ru, 355 p.
9. Pushkar’ov, O.V. and Priymachenko, V.M. (2010), Zb. nauk. pr. Іnst. Geohіmії Navkolyshn’ogo Seredovyshcha, Vyp. 18, kyiv, ua, pp. 149-161.
10. Tarasevich, Yu.I. (1988), Stroenie i himiya poverhnosti sloistyh silikatov, nauk. dumka, kyiv, ua, 248 p.
11. Tsitsishvili, G.V., Andronikashvili, T.G., Kirov, G.N. and Filizova, l.D. (1985), Prirodnye tseolity, himiya, Moscow, ru, 224 p.
12. Ali, A.A. and El-Bishtawi, R. (1997), J. Chem. Technol. and Biotechnol., Vol. 69, pp. 27-34. https://doi.org/10.1002/(SICI)1097-4660(199705)69:1<27::AID-JCTB682>3.0.CO;2-J
13. Ambruster, T. (1993), Amer. Miner., Vol. 78, pp. 260-264.
14. Armbruster, T. and Gunter, M.E. (2001), Reviews in Mineral. and Geochem., Vol. 45, Natural Zeolites: Occurrence, properties, applications, in Bish, d.l. and Ming, d.W. (eds.), Mineral. Soc. of amer., uSa, pp. 161.
15. Ataman, G. (1997), Yeirbilimleri, Vol. 3, turkish, pp. 85-94.
16. Breck, D.W. (1974), Zeolite, molecular sieves. Structure, chemistry, and use, n. y., london, Sydney, toronto, ca, 781 p.
17. Brindley, G.W. (1966), Clay and clay minerals, Proc. 14th Nat. conf., oxford etc. Pergamon Press, oxford, pp. 27-34.
18. Gally, E., Gottardi, G., Mayer, H., Preisings, A. and Passaglia, E. (1983), Acta Cryst., Vol. B 39, pp. 189-197.
19. Goldansky, V.I., Trahktenberg, l.I. and Flerov, V.N. (1989), Tunneling phenomena in Chemical Physics, Gordon and Breach Science Publ., n.y., 328 p.
20. Hammes-Shiffer, S. (1998), Advances in Classical Trajectory Methods, Vol. 3, pp. 73-119.
21. Koyama, K. and Takeuchi, Y. (1977), Zeitschrift für Kristallographie, no 145, pp. 216-239.
22. Melnikov, V.S. and Grechanovskaya, E.E. (1998), Carpathian-Balkan geol. assoc., XVI congr. Aug. 30th-Sept. 2nd, abstracts, Vienna, austria, p. 378.
23. Mortier, W.G. and Pearce, J.R. (1981), Amer. Miner., Vol. 66, pp. 309-314.
24. Némethy, G. and Scheraga, H.A. (1962), J. Chem. Phys., Vol. 36, p. 3382. https://doi.org/10.1063/1.1732472
25. Yang, P., Stolz, J., Armbruster, T. and Gunter, M.E. (1997), Amer. Miner., Vol. 82, pp. 517-525. https://doi.org/10.2138/am-1997-5-611
26. Zakn, D. and Brickmann, J. (1999), Jsr. J. Chem., Vol. 39, no 34, pp. 463-482.

English