Possible Role of Ammonium in Hydrothermal Processes Education Gold Ores

UDC (549.657.11 + 549.283) : 543.429.22

https://doi.org/10.15407/mineraljournal.37.01.045

N.N. Bagmut, A.M. Kalinichenko, L.S. Derskyy
M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of NAS of Ukraine 34, Acad. Palladina Pr., Kyiv-142, Ukraine, 03680 E-mail: bagmut@igmof.gov.ua
Possible Role of Ammonium in Hydrothermal Processes Education Gold Ores
Language: Russian
Mineralogical journal 2015, 37 (1): 45-55

Abstract: In previous publications [12, 13, 16], the authors informed of the isomorphic substitution of potassium ions in the NH3+ K-feldspar from some gold deposits studied by them. Possible involvement of ammonium ions in the geochemical gold transfer was supposed. In this paper, the method of electron paramagnetic resonance (EPR) was studied on 600 samples of alkali feldspars from a variety of gold and gold-silver deposits in Russia, Ukraine and Uzbekistan. These results confirm the presence of EPR signals from NH3+ in all investigated samples of feldspars from the rocks containing gold. In the study of feldspars of two different metasomatic columns it was found that the distribution of the mean intensity EPR signals from NH3+ in zones is of the same form. The intensity of EPR signals from NH3+ increases with the increase in the gold content in the rock, in the transition from the host rocks to the ore zones. This was the basis for plotting the function of the intensity of the ESR signals in feldspars against gold content in the rock. It turned out that this dependence is exponential. This kind of dependence can be explained by the fact that the deposition of gold decomposes ammonia-containing complexes of gold, ammonia goes into solution, and is isomorphic to replace potassium ions in feldspars. That is, the gold content in the rock determined by the number of broken systems and can increase without limit, and the number of isomorphic substitution is limited by the presence of structural positions of potassium ions in feldspars. Thus, ESR signals from NH3+ increase with increasing gold content in the rock. At very high gold content, EPR signals will be satisfied, and go to the "shelf ". Based on the possibility of substitution of potassium ions by ammonia (ammonium) in potassium-containing minerals, the assumption of an active role of these ions at all stages of the hydrothermal formation of gold deposits is done in the work. Hydrothermal leaching of ammonium-containing solutions of univalent gold with its replacement by ammonium ions occurs at the stage of mobilization of unaltered rocks from potassium-containing minerals. Isomorphic substitution of potassium ions by the ions of univalent gold under crystallization and replacing of the both by ammonium ions is possible due to the proximity of values of their ionic radii. When ammonium ions are present in the solution, the leached gold is included in ammoniacontaining soluble complexes with further migration to the site of deposition. After the disintegration of these complexes, ions of ammonia (or ammonium) enter into solution and potassium-containing minerals (that is fixed), creating "ammonia" halos around gold deposits. The presence of these halos can be used to delineate ore bodies.

Keywords: hydrothermal process, metasomatism, gold, feldspars, ammonium, isomorphism, electron paramagnetic resonance.

References:
1. Bagmut, N.N., Bespal'ko, N.A., Brik, A.B. and Matjash, I.V. (1975), Geohimija, Moskva, No 10, pp. 1568-1571.
2. Barsukov, V.L., Kozerenko, S.V. and Ahmanova, M.V. (1985), "Osnovnyie problemy teoreticheskoj i pricladnoj geologii", Tez. dokl. nauch. conf., Zvenigorod, Moskva, pp. 135-136.
3. Bezrukova, L.A. and Kim, A.U. (2013), Gornyj vestnik Kamchatki, Vyp. 2 (24), pp. 65-70.
4. Boboev, I.R. (2013), Issledovanie i razrabotka tehnologii izvlechenija zolota iz okislennyh zoloto-medno-mysh’jakovistyh rud Tarrorskogo mestorozhdenija, Avtoreferat dissertazii kandidata tehn. nauk, Moskva, 23 p.
5. Ivannikov, S.I., Jepov, D.G., Krysenko, G.F., Medikov, M.A., Bratskaja, S.Ju. and Judakov, A.A. (2013), Vestnik ONZ RAN, Vol. 5, NZ 1001, doi: 10.2205/2013 NZ000115.
6. Ivanov, V.V., Afanas’eva, T.B., Bagmut, N.N., Ermilova, S.A., Lejer, P.V., Molchanova, G.B. and Narnov, G.A. (1997), Tez. dokl. IX Ses. Sev.-Vost. otd-nija Vseros. Mineral. o-va, Magadan, pp. 88-90.
7. Ivanov, V.V., Chashchin, A.A., Lejer, P.U. Krou, D.E., Zin’kov, A.V., Ignat’ev, A.V., Bagmut, N.N. and Afanas’eva, T.B. (1977), Tr. DVGTU, Ser. 4 (gorno-geol.), Vyp. 118, pp. 13-20.
8. Klimancev, A.M., Voronin, O.B., Kononova, O.N. and Holmogorov, A.G. (2003), Vestnik KrasGU, No 2, pp. 136-143.
9. Kol’cov, A.B. (1996), Metasomaticheskie processy na zolotorudnyh mestorozhdenijah v metaterigennyh kompleksah, Avtoreferat dissertazii doktora geologo-mineralogicheskih nauk, Sankt-Peterburg, 46 p.
10. Laricheva, O.O., Ahmanova, M.V., Bagmut, N.N., Kalinichenko, A.M., Kuznezova, T.P. and Bychkov, A.M. (1995), Geohimija, Moskva, No 4, pp. 601-607.
11. Lihacheva, A.Ju. (2003), Termicheskaja jevoljucija ammonija v prirodnyh karkasnyh aljumosilikatah, Avtoreferat dissertazii kandidata geologo-mineralogicheskih nauk, Novosibirsk, 31 p.
12. Matjash, I.V., Bagmut, N.N. and Bojko, D.V. (1987), Geologicheskij zhurnal, Kyiv, Ukraine, Vol. 47, pp. 133-136.
13. Matjash, I.V., Bagmut, N.N., Veremeenko, L.I. and Koptjuh, Ju.M. (1988), Sbornik materialov IV Vsesojuzn. soveshhanija "Teorija i praktika geohimicheskih poiskov v sovremennyh uslovijah", Uzhgorod, Vyp. 4, p. 60.
14. Matjash, I.V., Brik, A.B., Monahov, V.I. and Derskij, L.S. (1982), Geohimija, Moskva, No 7, pp. 1048-1051.
15. Matjash, I.V., Litovchenko, A.S., Bagmut, N.N. and Proshko, V.Ja. (1981), Radiospektroskopija polevyh shpatov, Naukova dumka, Kyiv, 112 p.
16. Matjash, I.V., Nekrasov, I.V. and Bagmut, N.N. (1988), Mineralogical journal (Ukraine), Kyiv, Vol. 10 No 1, pp. 91-93.
17. Mel’nikov, V.S. and Shun’ko, V.V. (1988), Mineralogical journal (Ukraine), Kyiv, Vol. 10 No 4, pp. 57-64.
18. Miljaev, S.A. and Chekvaidze, V.B. (2011), (posvjasch. 80-letiju zasluzhennogo geologa RSFSR, prof., akad. Mezhdunar. akad. miner. resursov N.N. Trofimova), Rossijskij Universitet druzhby narodov, Moskva, pp. 73-74.
19. Moiseenko, V.P. and Fat’janov, I.I. (1978), Geohimija zolota, DVNC AN SSSR, Vladivostok, pp. 14-19.
20. Petrovskaja, N.V. (1973), Samorodnoe zoloto, Nauka, Moskva, 347 p.
21. Sokerina, N.V. (2007), Materialy IV mezhdunarodnogo seminara, Mineralogija i zhizn’: proishozhdenie biosfery i koje voljucija mineral’nogo i biologicheskogo mirov, biomineralogija, IG Komi NC UrO RAN, Syktyvkar, pp. 226-228.
22. Fat’janov, I.I. and Molchanov, V.P. (1978), Geohimija zolota, DVNC AN SSSR, Vladivostok, pp. 42-49.
23. Homich, V.G., Ivanov, V.V. and Fat’janov, I.I. (1989), Tipizacija zolotoserebrjanogo orudenenija, DVO AN SSSR, Vladivostok, 292 p.
24. Matjash, I.V., Bagmut, N.N., Veremeenko, L.I., Koptjuh, Ju.M., Terec, G.Ja., Shumskij, A.A. and Shkljanka, V.M. (1986), Avtor. svid. "Sposob poiska i okontourivanija zolotorudnyh mestorozhdenijy", No 1267890, zajavleno 28.01.85, opublikovano 01.07.86., Ukraine.
25. Erd, B.C., White, D.E., Fahey, J.J. and Lee, D.E. (1964), Amer. Miner., Vol. 49 No 7-8, pp. 831-850.

English