HIGH-PRESSURE TRANSITION OF Fe2+ FROM LOW- TO HIGH-SPIN ELECTRONIC STATE IN SIDERITE: OPTICAL ABSORPTION STUDY

UDC 549.08.53

https://doi.org/10.15407./mineraljournal.39.04.003 

M.N. Taran 1, J. Müller 2, A. Friedrich 3, M. Koch-Müller 2

1 M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine

34, Acad. Palladin Ave., Kyiv, Ukraine, 03142

2 Helmholtz-Centre Potsdam, German Research Centre for Geosciences, GFZ

Telegrafenberg, Potsdam, Germany, 14473

Е-mail: jmueller@gfz-potsdam.de, mkoch@gfz-potsdam.de

3 Julius-Maximilians-Universität Würzburg Am Hubland,

Institut für Anorganische Chemie

Würzburg, Germany, 97074

Е-mail: alexandra.friedrich1@uni-wuerzburg.de

HIGH-PRESSURE TRANSITION OF Fe2+ FROM LOW- TO HIGH-SPIN ELECTRONIC STATE IN SIDERITE: OPTICAL ABSORPTION STUDY

Language: Ukrainian

Mineralogical journal 2017, 39 (4): 3-23

Abstract: Optical absorption spectra of siderite were measured across the high-spin (HS) to low-spin (LS) transition up at pressures up to ~70 GPa in the spectral range between 28500 and 10000 cm–1. A pair of two overlapping broad bands, caused by the electronic spin-allowed 5T2g → 5Eg transition of octahedrally coordinated Fe2+, was observed in the spectra at pressures up to 44.5 GPa. Besides, eight spin-forbidden bands are observable at high pressures up to 27.6 GPa, but they are gradually overlapped by the increasing high-energy absorption edge to be observed across the whole pressure range. Comparison of energies of 5T2g → 5Eg band of Fe2+ with the mean Fe—O distance in the structural octahedron from structural data evidences that the value of the constant C in the equation , where D is the crystal field splitting, remains stable in the pressure range from 10–4 to 44.5 ГПа. The splitting of the spin-allowed band of Fe2+ in the HS-state to two components does not depend on pressure. We assume that this is due to the fact that it is not caused by trigonal distortion of FeO6-octahedron, but by dynamic Jahn-Teller effect of Fe2+. Due to the HS- to LS-spin state transition of Fe2+ between 44.5 and 47.6 GPa a new broad intense absorption band, assigned to the electronic spin-allowed 1A1g → 1T1g transition of octahedral Fe2+ in LS configuration, appears on a steep background of the edge. From the optical absorption spectra we estimated octahedral compression module of FeО6 in HS and LS configurations as function of pressure. In the former case, in the pressure range from 10–4 to 44.4 GPa,  nonlinearly increases from 96 to ~700 GPa. In the process of transformation from HS- to LS-state this value drops down to ~240 GPa and at farther compression practically linearly and relatively slowly grows to 280 GPa at P = 65.6 GPa — the highest pressure at which the 1A1g → 1T1g band of Fe2+ in LS-state can be discerned and its energy can be evaluated. An interesting observation is strong intensification of both the spin-allowed and spin-forbidden bands with pressure. We assume this is caused by borrowing intensity from the UV electronic ligand-to-metal charge-transfer transition absorption bands, which are allowed by the Laporte selection rule.

Keywords: carbonates, high pressure, optical absorption spectroscopy, spin transition, siderite.

References:

  1. Balhauzen, K. (1964), Vvedenie v teoriyu polia ligandov, Mir, Moscow, RU, 360 p.
  2. Bersuker, I.B. (1986), Elektronnoe stroenie i svoystva coordinatsionnyh soedineniy: vvedenie in teoriyu, Leningrad, Himiya, RU, 286 p.
  3. Marfunin, A.S. (1974), Vvedenie v fizicu mineralov, Nedra, Moscow, RU, 328 p.
  4. Platonov, A.N., Taran, M.N., Polshin, E.V. and Minko, O.E. (1979), Izv. AN SSSR. Ser. geol., No. 10, RU, pp. 54-68.
  5. Aguado, F., Rodrýguez, F. and Núñez, P. (2003), Phys. Rev., Vol. B 67, No. 20, p. 205101.
  6. Aguado, F., Rodrýguez, F. and Núñez, P. (2002), High Pressure Research, Vol. 22, No. 1, pp. 641-675. https://doi.org/10.1080/08957950211361
  7. Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (1990), Handbook of Mineralogy, Vol. 1, Mineral Data Publishing, Tucson, Arizona, available at: http://www.handbookofmineralogy.org/
  8. Armbruster, Th., Libowitzky, E., Diamond, L., Auernhammer, M., Bauerhansl, P., Hoffmann, Ch., Irran, E., Kurka, A. and Rosenstingl, H. (1995), Mineral. and Petrol., Vol. 52, No. 1, pp. 113-126. https://doi.org/10.1007/BF01163130
  9. Badro, J., Fiquet, G., Guyot, F., Rueff, J.P., Struzhkin, V.V., Vanko, G. and Monaco, G. (2003), Science, Vol. 300, No. 5620, pp. 789-791. https://doi.org/10.1126/science.1081311
  10. Badro, J., Rueff, J.P., Vanko, G., Monaco, G., Fiquet, G. and Guyot, F. (2004), Science, Vol. 305, No. 5682, pp. 383-386. https://doi.org/10.1126/science.1098840
  11. Bengtson, A., Persson, K. and Morgan, D. (2008), Earth Planet. Sci. Lett, Vol. 265, No. 3-4, pp. 535-545. https://doi.org/10.1016/j.epsl.2007.10.049
  12. Burns, R.G. (1993), Mineralogical application of crystal field theory, Cambridge Univ. Press, Cambridge, 550 p. https://doi.org/10.1017/CBO9780511524899
  13. Cerantola, V., McCammon, C., Kupenko, I., Kantor, I., Marini, C., Wilke, M., Ismailova, L., Solopova, N., Chumakov, A., Pascarelli, S. and Dubrovinsky, L. (2015), Amer. Miner., Vol. 100, No. 11-12, pp. 2670-2681. https://doi.org/10.2138/am-2015-5319
  14. Cohen, R.E., Mazin, I.I. and Isaak, D.G. (1997), Science, Vol. 275, No. 5300, pp. 654-657. https://doi.org/10.1126/science.275.5300.654
  15. Drickamer, H.G. and Frank, C.W. (1973), Electronic Transition and the High Pressure Chemistry and Physics of Solids, Chapman and Hall, London, 220 p. https://doi.org/10.1007/978-94-011-6896-0
  16. Effenberger, H., Mereiter, K. and Zemann, J. (1981), Z. Kristallogr., Vol. 156, No. 3-4, pp. 233-243.
  17. Farfan, G., Wang, S., Ma, H., Caracas, R. and Mao, W.L. (2012), Amer. Miner., Vol. 97, No. 8-9, pp. 1421-1426. https://doi.org/10.2138/am.2012.4001
  18. Friedrich, A., Winkler, B., Morgenroth, W., Ruiz-Fuertes, J., Koch-Müller, M., Rhede, D. and Milman, V. (2014), Phys. Rev., Vol. B 90, No. 9, p. 094105.
  19. Fyfe, W.S. (1960), Geochim. Cosmochim. Acta, Vol. 19, No. 2, pp. 141-143. https://doi.org/10.1016/0016-7037(60)90046-6
  20. Goncharov, A.F., Beck, P., Struzhkin, V.V., Haugen, B.D. and Jacobsen, S.D. (2009), Phys. Earth. Planet. Interiors, Vol. 174, No. 1-4, pp. 24-32. https://doi.org/10.1016/j.pepi.2008.07.033
  21. Goncharov, A.F., Haugen, B.D., Struzhkin, V.V., Beck, P. and Jacobsen, S.D. (2008), Nature, Vol. 456, No. 7219, pp. 231-234, DOI: https://doi.org/10.1038/nature07412. https://doi.org/10.1038/nature07412
  22. Goncharov, A.F., Struzhkin, V.V. and Jacobsen, S.D. (2006), Science, Vol. 312, pp. 1205-1208. https://doi.org/10.1126/science.1125622
  23. Groat, L.A., Rossman, G.R., Dyar, M.D., Turner, D., Piccoli, P.M.B., Schultz, A.J. and Ottolini, L. (2010), Can. Mineral., Vol. 48, No. 3, pp. 597-613. https://doi.org/10.3749/canmin.48.3.597
  24. Gütlich, P. and Goodwin, H.A. (2004), Top. Curr. Chem., Vol. 233, pp. 1-47. https://doi.org/10.1007/b13527
  25. Hauser, A. (2004), Adv. Polym. Sci., Vol. 233, pp. 49-58.
  26. van der Hilst, R.D. (2004), Science, Vol. 306, No. 5697, pp. 817-818. https://doi.org/10.1126/science.1104679
  27. Hsu, H. and Huang, Sh.-Ch. (2016), Phys. Rev., Vol. B 94, No. 6, p. 06040.
  28. Jackson, J.M., Sturhahn, W., Shen, G.Y., Zhao, J.Y., Hu, M.Y., Errandonea, D., Bass, J.D. and Fei, Y.W. (2005), Amer. Miner., Vol. 90, No. 1, pp. 199-205. https://doi.org/10.2138/am.2005.1633
  29. Keppler, H., Dubrovinsky, L.S., Narygina, O. and Kantor, I. (2008), Science, Vol. 322, No. 5907, pp. 1529-1532. https://doi.org/10.1126/science.1164609
  30. Keppler, H., Kantor, I. and Dubrovinsky, L.S. (2007), Amer. Miner., Vol. 92, No. 2-3, pp. 433-436. https://doi.org/10.2138/am.2007.2454
  31. Keppler, H., McCammon, C.A. and Rubie, D.C. (1994), Amer. Miner., Vol. 79, No. 11, pp. 1215-1218.
  32. Keppler, H. and Smyth, R.J. (2005), Amer. Miner., Vol. 90, No. 7, 1209-1212. https://doi.org/10.2138/am.2005.1908
  33. Langer, K. (1990), Absorption Spectroscopy in Mineralogy, in Monttana, A. and Burragato, F. (eds.), Elsevier, pp. 228-284.
  34. Langer, K. (1988), Physical Properties and Thermodynamic Behaviour of Minerals, NATO ASI Ser., Vol. 225, pp. 639-685.
  35. Lavina, B., Dera, P., Downs, R.T., Prakapenka, V., Rivers, M., Sutton, S. and Nicol, M. (2009), Geophys. Res. Lett., Vol. 36, No. 23, pp. L23306. https://doi.org/10.1029/2009GL039652
  36. Lavina, B., Dera, P., Downs, R.T., Yang, W., Sinogeikin, S., Meng, Y., Shen, G. and Schiferl, D. (2010), Phys. Rev., Vol. B 82, No. 6, p. 064110.
  37. Li, J., Struzhkin, V.V., Mao, H.K., Shu, J.F., Hemley, R.J., Fei, Y.W., Mysen, B., Dera, P., Prakapenka, V. and Shen, G.Y. (2004), Proc. Nat. Acad. Sci. USA, Vol. 101, pp. 14027-14030. https://doi.org/10.1073/pnas.0405804101
  38. Li, J., Sturhahn, W., Jackson, J.M., Struzhkin, V.V., Lin, J.F., Zhao, J., Mao, H.K. and Shen, G.Y. (2006), Phys. Chem. Mineral., Vol. 33, pp. 575-585. https://doi.org/10.1007/s00269-006-0105-y
  39. Lin, J.-F., Gavriliuk, A.G., Struzhkin, V.V., Jacobsen, S.D., Sturhahn, W., Hu, M.Y., Chow, P. and Yoo, C.-S. (2006), Phys. Rev., Vol. B 73, No. 11, p. 113107.
  40. Lin, J.-F., Liu, J., Jacobs, C. and Prakapenka, V.B. (2012), Amer. Miner., Vol. 97, No. 4, pp. 583-591. https://doi.org/10.2138/am.2012.3961
  41. Lin, J.-F., Struzhkin, V.V., Jacobsen, S.D., Hu, M.Y., Chow, P., Kung, J., Liu, H.Z., Mao, H.K. and Hemley, R.J. (2005), Nature, Vol. 436, No. 7049, pp. 377-380. https://doi.org/10.1038/nature03825
  42. Lin, J.-F. and Tsuchiya, T. (2008), Phys. Earth Planet. Interiors, Vol. 170, No. 3-4, pp. 248-259. https://doi.org/10.1016/j.pepi.2008.01.005
  43. Lin, J.-F., Vanko, G., Jacobsen, S.D., Iota, V., Struzhkin, V.V., Prakapenka, V.B., Kuznetsov, A. and Yoo, C.-S. (2007), Science, Vol. 317, No. 7049, pp. 1740-1743. https://doi.org/10.1126/science.1144997
  44. Liu, J., Lin, J.-F., Mao, Zh. and Prakapenka, V.B. (2014), Amer. Miner., Vol. 99, No. 1, pp. 84-93. https://doi.org/10.2138/am.2014.4553
  45. Lobanov, S.S., Goncharov, A.F. and Litasov, K.D. (2015), Amer. Miner., Vol. 100, No. 5-6, pp. 1059-1064. https://doi.org/10.2138/am-2015-5053
  46. Lobanov, S.S., Holtgrewe, N. and Goncharov, A.F. (2016), Earth Planet. Sci. Lett., Vol. 449, pp. 20-25. https://doi.org/10.1016/j.epsl.2016.05.028
  47. Mao, H.K., Xu, J. and Bell, P.M. (1986), Geophys. Res., Vol. 91, No. B5, pp. 4673-4676. https://doi.org/10.1029/JB091iB05p04673
  48. Morosin, B. (1972), Acta Cryst., Vol. B 28, pp. 1899-1903.
  49. Müller, J., Efthimiopoulos, I., Jahn, S. and Koch-Müller, M. (2017), Eur. Jour. Mineral., June 08, DOI: https://doi.org/10.1127/ejm/2017/0029-2645 https://doi.org/10.1127/ejm/2017/0029-2645
  50. Nagai, T., Ishido, T., Seto, Y., Nishio-Hamane, D., Sata, N., Fujino, K. (2010), J. Phys.: Conference Series, Vol. 215, No. 1, pp. 012002. https://doi.org/10.1088/1742-6596/215/1/012002
  51. Nagy, D.L., Dézci, I. and Gonser, U. (1975), N. Jb. Miner. Mh., No. H3, pp. 101-114.
  52. Pasternak, M.P., Taylor, R.D., Jeanloz, R., Li, X., Nguyen, J.H. and McCammon, C.A. (1997), Phys. Rev. Lett., Vol. 79, No. 25, pp. 5046-5049. https://doi.org/10.1103/PhysRevLett.79.5046
  53. Ross, N.L. and Sowerby, J.R. (1999), Eur. J. Miner., Vol. 11, No. 5, pp. 791-801. https://doi.org/10.1127/ejm/11/5/0791
  54. Rossman, G.R. (2014), Spectroscopic Methods in Mineralogy and Geology, in Hawthorne, F.C. (ed.), Revs Mineral., Vol. 78, No. 1, pp. 371-398.
  55. Shankland, T.J., Duba, A.J. and Woronow, A.J. (1974), Geophys. Res., Vol. 79, No. 23, pp. 3273-3282. https://doi.org/10.1029/JB079i023p03273
  56. Slack, G.A., Ham, F.S. and Chrenko, R.M. (1966), Phys. Rev., Vol. 152, No. 1, pp. 367-402. https://doi.org/10.1103/PhysRev.152.376
  57. Taran, M.N., Dyar, D.M., Khomenko, V.M. and Boesenberg, J.S. (2017), Phys. Chem. Miner., Vol. 44, 7, pp 497-507, https://doi.org/10.1007/s00269-017-0877-2
  58. Taran, M.N., Koch-Müller, M. and Langer, K. (2005), Phys. Chem. Miner., Vol. 32, No. 3, pp. 175-188. https://doi.org/10.1007/s00269-005-0461-z
  59. Taran, M.N., Langer, K. and Platonov, A.N. (1996), Phys. Chem. Miner., Vol. 23, pp. 230-236. https://doi.org/10.1007/BF00207754
  60. Taran, M.N., Müller, J., Friedrich, A. and Koch-Müller, M. (2017), Phys. Chem. Miner., Vol. 44, Iss. 8, pp. 537-546, https://doi.org/10.1007/s00269-017-0880-7
  61. Taran, M.N., Ohashi, H. and Koch-Müller, M. (2008), Phys. Chem. Miner., Vol. 35, No. 3, pp. 117-127. https://doi.org/10.1007/s00269-007-0202-6
  62. Taran, M.N. and Rossman, G.R. (2001), Amer. Miner., Vol. 86, No. 9, pp. 973-980. https://doi.org/10.2138/am-2001-8-903
  63. Urusov, V.S. (1992), J. Solid State Chem., Vol. 98, No. 1, pp. 223-236. https://doi.org/10.1016/S0022-4596(05)80230-0
  64. Wildner, M., Andrut, M. and Rudowicz, Cz.Z. (2004), EMU notes in Mineralogy, Vol. 6, Ch. 3, pp. 93-144.
English