GLASS-CERAMICS AS IMITATION OF GEMS. II. OPTICAL SPECTRA, LUMINESCENCE, THE NATURE OF THE OPALESCENCE OF RARE-EARTH GLASS-CERAMICS

UDC (549 + 666.3) : 535.3
https://doi.org/10.15407./mineraljournal.39.04.024
V.M. Khomenko, A.M. Tarashchan, V.V. Ripenko, O.A. Vyshnevskyi, O.O. Kosorukov
M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine
34, Acad. Palladin Ave., Kyiv, Ukraine, 03142
E-mail: vladimir.khom@yahoo.com
GLASS-CERAMICS AS IMITATION OF GEMS. II. OPTICAL SPECTRA, LUMINESCENCE, THE NATURE OF THE OPALESCENCE OF RARE-EARTH GLASS-CERAMICS
Language: Russian 
Mineralogical journal 2017, 39 (4): 24-41
Abstract: A representative series of 34 differently colored samples of rare-earth jewelry glass-ceramics (REJGS) was studied using a complex of physical methods to deepen our knowledge about their structure at the atomic-electronic level, and clarifying the nature of their coloration and opalescence. To study the electronic structure of the optically active centers of transition metal ions with incomplete d- and f-shells, methods of optical and IR spectroscopy, X-ray and photoluminescence were used. Features of the composition and phase structure of REJGS were studied by means of electron microprobe analysis, X-ray fluorescence analysis, X-ray diffraction and electron microscopy. According to the chemical composition, REJGS samples can be divided into 4 groups: Y-Al-Si (YAS), La-Al-Si (LaAS), Y-Ti-Al-Si (YTAS) and Mg-Zr-Al-Si (MZAS), the overwhelming majority of samples being of the YAS type. The ratio between the three main groups of atoms: Si (Si), Al (Al + Ti + Zr + Sn) and REE (Y + Ln + Ba), remains practically unchanged in all samples and is about 2 : 3 : 1. Aluminum along with silicon predominantly acts as a glass-forming element and occupies tetrahedral positions, whereas lanthanoid ions are modifiers and enter the large positions in the glass matrix. Spectra of electronic ff-transitions of Nd3+, Pr3+, Er3+ and Ho3+ ions in aluminosilicate glass, which composition is close to allanite, were obtained in the range 28000—1000 cm–1. It was found that the colors of the REJGS are originated due to (a) impurities of single trivalent lanthanide ions: Nd3+, Pr3+, Er3+, Ho3+; (b) their combinations: Nd3+ + Er3+, Nd3+ + Pr3+, Nd3+ + Er3+ + Ho3+; (c) combinations of lanthanide ions with ions of transition metals of the iron group: Pr3+ + Cu2+, Pr3+ + Fe3+, Nd3+ + Ni2+, Ti4+ + Er3+; and (d) separate ions of the iron group: Ti4+, Cu2+. Positions of the maxima and the character of splitting of Ln3+ ions’ bands in the absorption spectra of REJGS samples depend on the composition of the glass matrix, although the values of the corresponding shifts are very small (10—30 cm–1). It is shown that the main distinctive feature of the absorption and luminescence spectra of Nd3+ ions in glass-ceramics in comparison with their spectra in britholite crystals is the weakly resolved thin structure of the bands. This allows us to conclude that the bulk of the chromophoric Ln3+ ions in REJGS do not enter the nanocrystalline phases, but remains in the glass matrix. The above conclusion is confirmed by the significant width, invariability of positions and the intensities' ratios of the emission bands of Nd3+, Pr3+, and Er3+ in the REJGS luminescence spectra. The opalescence phenomenon observed in the samples of the Mg-Zr REJGS is related to volume crystallization of the nanoparticles of the tetragonal modification of ZrO2. The main part of the Ln3+ iones remains in the glass matrix.
Keywords:  aluminosilicate glass-ceramics, rare-earth elements, chromophores, optical spectroscopy, luminescence, optically active centers.
References:
1.    Vyshnevskyi, O.A., Khomenko, V.M., Kosorukov, O.O., Ripenko, V.V. and Kalinichenko, T.G. (2017), Mineral. Journ. (Ukraine), Vol. 39, No. 3, Kyiv, UA, pp. 32-42. https://doi.org/10.15407/mineraljournal.39.03.032 
2.    Marfunin, A.S. (1975), Spectroscopy, luminescence and radiation centers in minerals, Nauka, Moscow, RU, 327 p. 
3.    Platonov, A.N. (1976), Nature of minerals colour, Nauk. dumka, Kyiv, UA, 264 p. 
4.    Sviridov, D.E., Sviridova, R.K. and Smirnov, Yu.F. (1976), Optical spectra of ions of transitional metals in crystals, Nauka, Moscow, RU, 267 p. 
5.    Tarashchan, A.N. (1978), Luminescence of minerals, Nauk. dumka, Kyiv, UA, 296 c.
6.    Khomenko, V.M. (2011), Mineral. Journ. (Ukraine), Vol. 33, No. 4, Kyiv, UA, pp. 27-38.
7.    Shalyapin, A.L., Shulgin, B.V., Gavrilov, F.F., Fedorovskih, Yu.A. and Chukhlantsev, V.G. (1973), Spectroscopy of crystals, Nauka, Leningrad, RU, pp. 184-187. 
8.    Adams, J.W. (1965), Amer. Miner., Vol. 50, pp. 356-366. 
9.    Avakyan, K. (2012), Jewellery news Asia, December, pp. 37-39. 
10.    Cicconi, M.R., Giuli, G., Paris, E., Courtial, P. and Dingwell, D.B. (2013), J. Non-Crystalline Solids, Vol. 362, pp. 162-168. https://doi.org/10.1016/j.jnoncrysol.2012.11.035
11.    Gruber, J.B., Burdick, G.W., Valiev, U.V., Nash, K.L., Rakhimov, S.A. and Sardar, D.K. (2009), J. Appl. Phys, Vol. 106, p. 113-110. https://doi.org/10.1063/1.3259441
12.    (2017), International Centre for Diffraction Data (ICDD), available at: http://www.icdd.com/index.htm; http://www.icdd.com/products/ (Accessed 2 March 2017).
13.    Kawamoto, Y., Kanno, R. and Qiu, J. (1998), J. Materials Science, Vol. 33, No. 1, pp. 63-67. https://doi.org/10.1023/A:1004333310532
14.    Kholodkov, A.V. and Golant, K.M. (2005), Opt. Mater., Vol. 27, pp. 1178-1186. https://doi.org/10.1016/j.optmat.2004.04.019
15.    Khomenko, V.M., Langer, K. and Wirth, R. (2003), Phys. Chem. Miner., Vol. 30, pp. 98-107. https://doi.org/10.1007/s00269-002-0292-0
16.    Kubicki, J.D., Sykes, D. and Rossman, G.R. (1993), Phys. Chem. Miner., Vol. 20, pp. 425-432.
17.    Lakshminarayana, G. and Jianrongand, Qiu J. (2009), J. Alloys and Compounds, Vol. 476, Iss. 1-2, pp. 470-476. https://doi.org/10.1016/j.jallcom.2008.09.015
18.    Marchi, J., Morais, D.S., Schneider, J., Bressiani, J.C. and Bressiani, A.H.A. (2005), J. Non-Crystalline Solids, Vol. 351, pp. 863-868. https://doi.org/10.1016/j.jnoncrysol.2005.01.078
19.    Marfunin, A.S. (1979), Physics of Minerals and Inorganic Materials, Transl. from the Russian by Egorova, N.G. and Mishchenko, A.G., Springer-Verlag, Berlin-Heidelberg , 340 p. https://doi.org/10.1007/978-3-642-67044-2
20.    Padlyak, B., Ryba-Romanowski, W. and Lisiecki, R. (2008), Optica Applicata, Vol. XXXVIII, No. 1, pp. 189-202.
21.    Ponader, C.W. and Brown, Jr.G.E. (1989), Geochim. et Cosmochim. Acta, Vol. 53, Iss. 11, pp. 2893-2903, DOI: https://doi.org/10.1016/0016-7037(89)90166-X https://doi.org/10.1016/0016-7037(89)90166-X
22.    Schaller, T. and Stebbins, J.F. (1998), J. Phys. Chem. B, Vol. 102, pp. 10690-10697, https://doi.org/10.1021/jp982387m
23.    Semwal, K. and Bhatt, S.C. (2013), Intern. J. Physics, Vol. 1, No. 1, pp. 15-21.
24.    Shen, A. (2010), Gems & Gemology, Vol. 46, No. 2, pp. 156-157. 
25.    Srisittipokakun, N., Ruangtaweep, Y., Horprathum, M. and Kaewkhao, J. (2014), AIP Conf. Proceedings, Vol. 1617, pp. 120-125. https://doi.org/10.1063/1.4897119.
26.    Tilley, R.J.D. (2013), Lanthanoid ion color. Encyclopedia of color science and technology, Springer, New York, pp. 1104-1113, https://doi.org/10.1007/978-3-642-27851-8_257-1 
27.    Walrafen, G.E. and Samanta, S.R. (1978), J. Chem. Phys., Vol. 69, pp. 493-495. https://doi.org/10.1063/1.436379
28.    Wang, Y., Li, J., Zhu, Z., You, Z., Xu, J. and Tu, C. (2015), Opt. Express, Vol. 23, No. 14, pp. 18554-18562, https://doi.org/10.1364/OE.23.018554
29.    Weber, J.K.R., Abadie, J.G., Key, T.S., Hiera, K., Nordine, P.C., Waynant, R.W. and Ilev, I.K., (2002), J. Amer. Ceram. Soc., Vol. 85, pp. 1309-1311. https://doi.org/10.1111/j.1151-2916.2002.tb00266.x
30.    Xu, Y., Zhang, X., Dai, S., Fan, B., Ma, H., Adam, J., Ren, J., and Chen, G. (2011), J. Phys. Chem. C, Vol. 115 (26), pp. 13056-13062, https://doi.org/10.1021/jp201503v

English