CRYSTAL CHEMISTRY, OPTICAL SPECTRA AND COLOR OF BERYL. I. HELIODOR AND GOLDEN BERYL — TWO VARIETIES OF NATURAL YELLOW BERYL
UDC 549.091
https://doi.org/10.15407/mineraljournal.38.02.003
A.N. Platonov, V.M. Khomenko, M.N. Taran
M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine
34, Acad. Palladina Pr., Kyiv-142, Ukraine, 03680
E-mail: vladimir.khom@yahoo.com; m_taran@hotmail.com
CRYSTAL CHEMISTRY, OPTICAL SPECTRA AND COLOR OF BERYL. I. HELIODOR AND GOLDEN BERYL — TWO VARIETIES OF NATURAL YELLOW BERYL
Language: Russian
Mineralogical journal 2016,38 (2): 3-14
Abstract: On the basis of new experimental and analytical data, as well as analysis of previously published results, two varieties of natural yellow beryl, known in literature as heliodor and/or golden beryl, were differentiated. They are characterized by sharply different configuration of optical absorption spectra and related optical properties such as pleochroism. The spectra of type I are characterized by weak polarization of the charge-transfer band O2– → Fe3+ that causes weak pleochroism of the crystals. The near-infrared region is dominated by absorption band of the OAC [4] Fe2+ centered at 12 350 cm–1 (E ⊥ c), whereas the doublet at 11 900—10 300 cm–1 (E || c), caused by OAC [6] Fe2+, is very weak or absent. The authors propose to attribute this type of spectra to yellow beryl called "heliodor". When heated up to 400 °C, such beryl crystals usually became colorless. Optical absorption spectra of type II were attributed to the variety called "golden beryl". They demonstrate strong shift of the edge of CTB O2– → Fe3+ to longer wavelengths in the polarization E || c. Doublet of [6] Fe2+ in vicinity 11 900—10 300 cm–1 is a main feature of their spectra in this polarization in the near IR region. An absorption band at 12 350 cm–1 in the E ⊥ c — polarized spectra shows unusually low intensity. A distinguishing feature of the type II spectra is the presence of the absorption band with a maximum near 19 000—20 000 cm–1 that was never observed in any other types of beryl spectra. Crystals of this type are characterized by intense pleochroism; when heated to 400 °C, they acquire a blue color. It was concluded that differences between spectra of types I and II are caused by different patterns of distribution of Fe3+ ions among non-equivalent positions in the beryl structure: in crystals with spectra of type I Fe3+ ions substitute Al in the octahedral positions, whereas in the samples with spectra of type II Fe3+ occupies Be-tetrahedra. It was proposed to use the traditional names of yellow beryl — heliodor and golden beryl for these two specific spectroscopic and crystal-chemical varieties. These varieties represent end members of natural yellow low-temperature beryls, in which Fe2+ and Fe3+ ions in different proportions occupy regular octahedral, tetrahedral and interstitial positions of crystal structure.
Keywords: heliodor, golden beryl, optical absorption spectra, nature of color, crystal chemistry of Fe ions.
References:
- Bakakin, V.V. and Rylov, G.M. (1970), Rentgenografiya mіneralnogo syriya, No 7, Nedra, Moscow, pp. 7-21.
- Bukanov, V.V. (2008), Tsvetnye kamni, Enciclopediya, St.-Petersburg, RU, 415 p.
- Kosals, Ya.A. and Rylov, G.M. (1977), Tr. In-te Geol. Geofiz. SO AN SSSR, Vyp. 370, pp. 134-153.
- Mineeva, R.M. and Bershov, L.V. (1990), Mineral. Journ. (Ukraine), Kyiv, Vol. 12 No 1, pp. 41-47.
- Ginsburg, A.I (ed.) (1976), Mineralogiya gidrotermalnykh mestorozhdenij berilliya, Nedra, Moscow, 199 p.
- Pavlishin, V.I., Platonov, A.N., Polshin, E.V., Semenova, T.F. and Starova, G.L. (1978), Zap. Vsesojuz. mineral. ob-va, No 2, pp. 165-180.
- Platonov, A.N. (1976), Priroda okraski mineralov, Naukova dumka, Kiev, 264 p.
- Platonov, A.N., Kupriyanova, I.I. and Taran, M.N. (2012), Mineral. Journ. (Ukraine), Kyiv, Vol. 34 No 1, pp. 81-93.
- Platonov, A.N., Taran, M.N. and Balitskij, V.S. (1984), Priroda okraski samotsvetov, Nedra, Moscow, 195 p.
- Platonov, A.N., Taran, M.N., Polshin, E.V. and Minko, O.E. (1979), Izv. AN SSSR, Ser. geol., No 10, pp. 54-68.
- Platonov, A.N., Taran, M.N. and Chistyakova, M.B. (1982), Novye dannye o mineralakh SSSR, Vyp. 30, pp. 131-134.
- Platonov, A.N., Shuriga, T.N., Ginsburg, A.I., Polshin, E.V. and Taran, M.N. (1979), Konstitutsiya i svoistva mineralov, No 13, pp. 32-41.
- Taran, M.N., Platonov, A.N., Kalinichenko, A.M. and Povarennykh, A.S. (1978), Dokl. AN Ukr.SSR, Ser. B, No 5, pp. 415-419.
- Khomenko, V.M., Vishnevskij, O.A., Gnelytska, Z.T. and Kamenchuk, V.K. (2007), Mineral. Journ. (Ukraine), Kyiv, Vol. 29 No 3, pp. 70-81.
- Khomenko, V.M. and Platonov, A.N. (1987), Porodoobrazuyushchie pirokseny: opticheskie spektry, okraska i pleokhroizm, Naukova dumka, Kiev, 214 p.
- Khomenko, V.M., Platonov, A.N. and Krasnova, N.I. (1991), Izv. AN SSSR, Ser. geol., No 12, pp. 94-105.
- Khomenko, V.M., Savchuk, E.O., Vishnevskij, O.A. and Dovbnya, N.A. (2010), Zap. Ukr. mіneral. tov., Vyp. 7, pp. 64-71.
- Adamo, I., Pavese, A., Prosperi, L., Della, V., Ajò, D., Diego, Gatta, G.D. and Smith, C.P. (2008), Gems and Gemol., Vol. 44 No 3, pp. 214-226.
- Andersson, L.O. (2013), Can. Miner., Vol. 51 No 1, pp. 15-25.
- Aurisicchio, C., Fioravanti, G., Grubessi, O. and Zanazzi, P.F. (1988), Amer. Miner., Vol. 78, pp. 826-837.
- Della-Wentura, G., Rossi, P., Parodi, G.C., Mottana, A., Raudsepp, M. and Prencipe, M. (2000), Eur. J. Miner., Vol. 12, pp. 121-127.
- Eeckhout, S.G., Neisius, T. and Castañeda, C. (2005), Nuclear instruments and methods in physics research, Vol. B229, Is. 1, pp. 73-77. https://doi.org/10.1016/j.nimb.2004.11.001
- Faye, G.H. (1969), Can. Miner., Vol. 10 No 1, pp. 112-117.
- Goldman, D.S., Rossman, G.R. and Parkin, K.M. (1978), Phys. Chem. Miner., Vol. 3, pp. 225-235.
- Isotani, S., Blak, A.R. and Watanabe, S. (2010), Physica, Vol. B405, pp. 1501-1508.
- Mathew, G., Karanth, R.V. Gundi, Rao T.K. and Desphande, R.S. (2000), J. Geol. Soc. India, Vol. 56, pp. 285-303.
- Platonov, A.N., Taran, M.N., Minko, O.E. and Polshyn, E.V. (1978), Phys. Chem. Miner., Vol. 3 No 1, pp. 87-88.
- Rossman, G.R. (2015), Mineral Spectroscopy Server, available at: http://minerals.gps.caltech.edu.
- Schumann, W. (1997), Gemstones of the world, Sterling Publ. Co., New York, UA, 272 p.
- Solntsev, V.P. and Bukin, G.V. (1997), Geol. and Geophys., Vol. 38, pp. 1661-1668.
- Spinolo, G., Fontana, I. and Galli, A. (2007), Phys. Stat. Solidi (b), Vol. 244 No 12, pp. 4660-4668. https://doi.org/10.1002/pssb.200743102
- Taran, M.N., Langer, K., Abs-Wurmbach, I., Frost, D. and Platonov, A.N. (2004), Phys. Chem. Miner., Vol. 31, pp. 650-657. https://doi.org/10.1007/s00269-004-0424-9
- Taran, M.N. and Rossman, G.R. (2001), Amer. Miner., Vol. 86, pp. 973-980. https://doi.org/10.2138/am-2001-8-903
- Wood, D.L. and Nassau, K. (1968), Amer. Miner., Vol. 53, pp. 777-800.