O.V. Dubyna. Petrological and Geochemical Features of the Azov Sea Area Carbonatites (Ukraine)

UDC 550.4 (477)
O.V. Dubyna
Taras Shevchenko Kyiv National University. Educational-scientific institute "Institute of Geology"
90, Vasylkivska Str., Kyiv, Ukraine, 03022
M.P. Semenenko Institute of Geochemistry,Mineralogy and Ore Formation of the NAS of Ukraine
34, Acad. Palladin Ave., Kyiv, Ukraine, 03142
E-mail: dubyna_a@ukr.net
Mineralogical journal 2018, 40 (1): 53-78
Abstract: The geochemical features carbonatites in the spatial association with gabbro-sienitic and alkaline-ultrabasic magmatic complexes or forming separate small vein or dike-like body of the Azov Sea area are considered. Most varieties are presented by calcite carbonatites, but both calcite-dolomite and calcite carbonatites are known in Chernigivka complex. Carbonatites are characterized by high Sr concentration, by decreasing Ba, and REE, low Ti, Zr, Hf, that is consistent with the average values for the Ca-carbonatites. Compared to carbonatites from other complexes of the Azov Sea area in the Chernigivka complex carbonatites are more enriched with phosphorus, Nb and Ta REE at high U/Th. Chondrite-normalized patterns are characterized by significant enrichment of LREE, without negative or with slightly negative Eu-anomaly (Eu* 0.74-1.04). Data on geochemistry of stable and Sr isotopes evidence for the abyssal nature of carbonatite magmas. The fairly narrow range of δC13 variation is typical of the Azov Sea area carbonatites that corresponds to the depth values, while δ18O can vary significantly, going beyond the scopes of typical carbonatitic values. Sometimes, this is connected with the presence, alongside with typical carbonatites, of carbonate veins of hydrothermal-metasomatic genesis, and sometimes with carbonatites interaction with meteoric and metamorphogrnic waters. In the Chernigivka carbonatite complex the significant variations of δ18O may be determined by different depth their erosion cross-cut and/or by thermal dissociation of rock-forming carbonates. The presented data indicate that carbonatites of different complexes can be formed as a result of different petrogenetical processes generation and further differentiation of initial magmatic melt. The calcite carbonatites of the Chernigivka complex and Khlibodarivka quarry may appear as a result of a primary dolomite carbonatitic melt crystallization or liquation carbonatitic and silicate melt from primary CO2-enriched silicate melt. Such ways of formation are also admitted for the Petrivsko-Gnutivsky carbonatite occurrence. The dolomitic and kimberlitic carbonatites are very similar to primitive carbonatitic melts formed by negligible partial melting of CO2-enriched mantle peridotite. Geochemical features of carbonatites from the gabbro-syenitic complexes of the Azov Sea area are more consistened with their liquation genesis.
Keywords: carbonatites, alkaline rocks, the Azov block, liquation, rare-earth elements, rare elements, the Ukrainian Shield.

  1. Amashukeli, Yu.A., Dubyna, O.V. and Kryvdik, S.G. (2011), Mineral. Journ. (Ukraine), Vol. 33, No. 4, Kyiv, UA, pp. 53-65.
  2. Bahdasarov, Yu.A. and Grinenko, L.N. (1981), Geochymia, Vol. 258, No. 5, Moscow, RU, pp. 1192-1195.
  3. Gonshakova, V.I., Boychuk, M.D., Buturlinov, N.V. and et al. (1968), Izv. AN SSSR, Ser. geol., No. 9, Moscow, RU, pp. 3-14.
  4. Glevasskyy, E.B. and Kryvdik, S.G. (1981), Dokembriyskyi karbonatitovyi kompleks Priazovia, Nauk. dumka, Kyiv, UA, 227 p.
  5. Dubyna, O.V. (2015), Geohіmіya luzhnyh porіd Ukrains'kogo shchyta, Abstr. of D.Sc. dissertation, Kyiv, UA, 42 p.
  6. Dubyna, O.V., Kryvdik, S.G. and Sharyhyn, V.V. (2014), Geochymia, No. 10, Moscow, RU, pp. 907-923.
  7. Eliseev, N.A., Kushev, V.G. and Vinogradov, D.P. (1965), Proterozoyskyi intruzivnyi kompleks Vostochnoho Priazovia, Nauka, Moscow-Leningrad, RU, 204 p.
  8. Zagnitko, V.N. and Lugovaia, I.P. (1989), Izotopnaya geokhimiya karbonatnyh i zhelezisto-kremnistyh porod Ukraynskogo shchita, Nauk. dumka, Kyiv, UA, 316 p.
  9. Zagnitko, V.N., Kryvdik, S.G., Legkova, G.V. and Bartnytskyi, E.N. (1993), Izotopnoe datirovanie endogennyh rudnyh formatsiy, Nauka, Moscow, RU, pp. 27-39.
  10. Kirilitsa, S.I., Konkov, H.H., Rusakov, N.F. and Marchenko, E.Ya. (1980), Dokl. AN UkrSSR, Ser. B, No. 8, Kyiv, UA, pp. 6-8.
  11. Koval, E.M., Strekozov, S.N., Zagnitko, V.N. and Lugovaia, I.P. (1988), Izvestiya AN SSSR, Ser. geol., No 7, Moscow, RU, pp. 128-133.
  12. Kogarko, L.N. (1977), Problema genezisa agpaitovyh magm, Nauka, Moscow, RU, 294 p.
  13. Kravchenko, G.L., Kryvdik, S.G. and Rusakov, N.F. (2008), Geokhimiia i rudoobrazovanie, Vyp. 26, Kyiv, UA, pp. 21-45.
  14. Kryvdik, S.G., Dubyna, O.V., Dovbush, T.I., Kotvytska, I.M., Vysotsky, O.B., Bezsmolova, N.V. and Amashukeli, Yu.A. (2011), Mineral. Journ. (Ukraine), Vol. 33, No. 3, Kyiv, UA, pp. 55-62.
  15. Kryvdik, S.G., Zagnitko, V.N. and Lugovaia, I.P. (1997), Mineral. Journ. (Ukraine), Vol. 19, No. 6, Kyiv, UA, pp. 28-42.
  16. Kryvdіk, S.G. and Tkachuk, V.I. (1990), Petrology of alkaline rocks of the Ukrainian Shield, Nauk. dumka, Kyiv, UA, 408 p.
  17. Kryvdik, S.G., Sharygin, V.V., Amashukeli, Yu.A. and Dubyna, O.V. (2014), Mineral. Journ. (Ukraine), Vol. 36, No 4, Kyiv, UA, pp. 5-19.
  18. Kryvdik, S.G., Sharygin, V.V., Morgun, V.G., Kravchenko, G.L. and Dubyna, O.V. (2015), Geol.-mineral. visnyk Kryvorizkoho nats. univ., Vol. 34, No. 2, Kryvyi Rig, UA, pp. 5-16.
  19. Kuzmenko, V.I. (1940), Dop. AN UkrSSR, No. 3, Kyiv, UA, pp. 35-40.
  20. Kuzmenko, V.I. (1946), Sov. geolog, No. 12, Moscow, RU, pp. 49-61.
  21. Kuts, V.P. (1971), Dop. AN UkrSSR, Ser. B, No. 10, Kyiv, UA, pp. 892-897.
  22. Lugovaia, I.P., Larikov, A.L., Proskurko, L.I. and Moroz, V.S. (2011), Geokhimia ta rudoutvorenia, Vyp. 30, Kyiv, UA, pp. 27-37.
  23. Marchenko, Ye.Ya., Konkov, H.H. and Vasenko, V.I. (1980), Dop. AN UkrSSR, No. 1, Kyiv, UA, pp. 24-27.
  24. Matviychuk, M.V. (2002), Geochemistry of rare mineralization in Precambrian alkaline rocks and carbonatites Azov block of Ukrainian Shield, Abstract of PhD dissertation, Kyiv, UA, 20 p.
  25. Panov, B.S. and Konkov, H.H. (1966), Geokhimia, No. 7, Moscow, RU, pp. 867-869.
  26. Panov, B.S., Korchemagin, V.A., Kupenko, V.I. and Pilot, I. (1979), Voprosy prykladnoy geokhymii i petrofiziki, Kyiv, UA, pp. 69-79.
  27. Mytskevich, B.F., Bespalko, N.A., Egorov, O.S. and et al. (1986), Rare elements of the UkrainianShield, Nauk. dumka, Kyiv, UA, 256 p.
  28. Sorokhtina, N.V. and Kryvdik, S.G. (2008), Shchelochnoi magmatizm Zemli, Materialy XXV Vseros. sem. s uchastiem stran SNG, 23-26 may 2008, St.-Petersburg, RU, pp. 147-149.
  29. Stadnik, V.O. and Osadchyi, V.K. (1978), Dokl. AN UkrSSR, Ser. B, No. 11, Kyiv, UA, pp. 984-989.
  30. Stadnik, V.A. and Shramenko, I.F. (1989), Geokhimiia i rudoobrazovanie, Vyp. 17, No. 4, Kyiv, UA, pp. 57-61.
  31. Timoshenko, O.D. (1975), Geologiia i rudonosnost' Yuga Ukrainy, No. 7, UA, pp. 20-24.
  32. Tsarovskyi, I.D. and Timoshenko, O.D. (1962), Geol. Journ., No. 6, Kyiv, UA, pp. 83-88.
  33. Shramenko, I.F., Stadnik, V.A. and Osadchyi, V.K. (1992), Geochemistry of carbonatites of the Ukrainian Shield, Nauk. dumka, Kyiv, UA, 212 p.
  34. Brooker, R.A. and Kjarsgaard, B.A. (2011), J. Petrol., Vol. 52, No. 7-8, pp. 1281-1305.
  35. Bell, K. (ed.) (1989), Carbonatites: genesis and evolution, Unwin Hyman, London, pp. 301-359.
  36. Сastor, S.B. (2008), Canad. Miner., Vol. 46, No. 4, pp. 779-806.
  37. Dalou, C., Koga, K.T., Hammouda, T. and Poitrasson, F. (2009), Geochim. et cosmochim. acta, Vol. 73, pp. 239-255. https://doi.org/10.1016/j.gca.2008.09.020
  38. Dalton, J.A. and Wood, B.J. (1993), Earth Planet. Sci. Lett., Vol. 119, pp. 511-525.
  39. Green, Т.Н. (1994), Chem. Geol., Vol. 117, pp. 1-36.
  40. Green, T.H., Adam, J. and Sic, S.H. (1992), Mineral. and Petrol., Vol. 46, pp. 179-184.
  41. Harmer, R.E. and Gittins, J. (1997), J. African Earth Sci., Vol. 25, No. 1, pp. 5-28. https://doi.org/10.1016/S0899-5362(97)00059-6
  42. Jones, J.H., Walker, D., Pickett, D.A., Murrell, M.T. and Beattie, P. (1995), Geochim. et cosmochim. acta, Vol. 59, No. 7, pp. 1307-1320. https://doi.org/10.1016/0016-7037(95)00045-2
  43. Kjarsgaard, B.A. (1998), J. Petrol., Vol. 39, No 11-12, pp. 2061-2075
  44. Lee, W.-J., Wyllie, P.J. and Rossman, R. (1994), Amer. Miner., Vol. 79, pp. 1135-1144.
  45. Lee, W.J. and Wyllie, P.J. (1996), J. Petrol., Vol. 37, No. 5, pp. 1125-1132.
  46. Lee, W.-J. and Wyllie, P.J. (199), Contribs Mineral. and Petrol., Vol. 127, pp. 1-16.
  47. Lee, W.J. and Wyllie, P.J. (1998), J. Petrol., V. 39, №. 11-12, pp. 2005-2013.
  48. Mitchell, R.H. (2005), Canad. Miner., Vol. 43, pp. 2049-2068.
  49. Moecher, D.P., Anderson, E.D., Cook, C.A. and Metzger, K. (1997), Canad. J. Earth Sci., Vol. 34, pp. 1185-1201.
  50. Otto, J.W. and Wyllie, P.J. (1993), Mineral. and Petrol., Vol. 48, pp. 343-365.
  51. Sweeney, R.J. (1994), Earth Planet. Sci. Lett., Vol. 128, pp. 259-270.
  52. Thibault, Y., Edgar, A.D. and Lloyd, F.E. (1992), Amer. Miner., Vol. 77, pp. 784-794.
  53. Veksler, I.V., Dorfman, A.M., Dulski, P., Kamenetsky, V.S., Danyushevsky L.V., Jeffries, T. and Dingwell, D.B. (2012), Geochim. et cosmochim. acta, Vol. 79, pp. 20-40. https://doi.org/10.1016/j.gca.2011.11.035
  54. Veksler, I.V., Dorfman, A.M., Kamenetsky, M., Dulski, P. and Dingwell, D.B. (2005), Geochim. et cosmochim. acta, Vol. 69, pp. 2847-2860. https://doi.org/10.1016/j.gca.2004.08.007
  55. Veksler, I.V., Petibon, C., Jenner, G.A., Dorfman, A.M. and Dingwell, D.B. (1998), J. Petrol., Vol. 39, No. 11-12, pp. 2095-2104.
  56. Viladkar, S.G. and Ramesh, R. (2014), Comunicações Geológicas, Vol. 101, No. 1, pp. 55-62.
  57. Wendlandt, R.F. and Harrison, W.J. (1979), Contribs Mineral. and Petrol., Vol. 69, pp. 409-419.
  58. Williams-Jones, A.E., Samson, I.M. and Olivio, G.R. (2000), Econ. Geol, Vol. 95, pp. 327-342.
  59. Wyllie, P.J. and Lee, W.-J. (1998), J. Petrol., Vol. 39, No. 11-12, pp. 1885-1893.