UDC 549.753.1 : 543.429.23


O.A. Kalinichenko, PhD (Physics, Mathematics), Senior Research Fellow

E-mail: mail7comp@gmail.com; ResearcherID: AAP-5127-2020 

V.I. Pavlyshyn, DrSc (Geology, Mineralogy), Prof., Acad. of the Academy

of Sci. of the Higher School of Ukraine

E-mail: V.I.Pavlyshyn@gmail.com; ResearcherID: D-6558-2019

V.P. Snisar, PhD (Geology, Mineralogy), Head of Department

E-mail: v.snisar@ukr.net; orcid: 0000-0002-3482-0563

A.M. Kalinichenko, PhD (Geology, Mineralogy), Leading Science Researcher

E-mail: akalinichenko@gmail.com; orcid: 0000-0001-7597-4617

M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine

34, Acad. Palladin Ave., Kyiv, Ukraine, 03142

Language: Ukrainian

Mineralogical journal 2022, 44 (3): 3-18

Abstract. Apatites of markedly different chemical composition and origin were studied using 19F magic-angle spinning nuclear magnetic resonance. Synthetic carbonate fluorapatites (CFAp) containing 2.6 to 4.7 wt% F, 0 to 4 wt% CO2 and 0 to 1 wt% Na2О, hydroxylfluorapatite (OH:F ≈ 1:1) containing about 3 wt% Y (Y-HFAp), natural REE-apatites, and CFAp and Y-HFAp heated at temperature from 700 to 1000 oC were researched. The spectra of apatites with isomorphic substitutions show the signals (chemical shift δ) caused by fluoride ions in fluorapatite structure and, possibly, near defects in Ca sites (from −102.5 to −100 ppm), near water molecules (H2Os) incorporated in the channels (about −96.5 ppm), and one or two signals with δх from −91 to −86 ppm. The spectra of synthetic CFAp and Y-НFAр heated up to 900 oС and original natural REE-apatites show two components, δх1 and δх2 shifted with 2 − 3 ppm, in this range. It is shown that the component δx2 is new, it hasn’t been observed in the spectra previously. Signals in the δх range are caused by Fх ions (up to 12% F) whose structural environment is different substantially from the "ideal" fluorapatite structure. It is found that the contents of Fх ions and CO2 in synthetic CFAp correlate linearly. It is shown that Fx (Fх1) ions can occupied sites in the channels near single vacancies Ca, and Fх2 ions — near double vacancies, Ca and anionic those in the channels, in CFAp with the F content not higher than stoichiometric and Y-НFАр. These vacancies can form through different heterovalent isomorphism mechanisms such as РО43− → СО32− and/or Са2+ → M3+ (М = REE, Al, Fe), vacancies in the channels of heated apatites with partial substitutions F → H2Os, OH — through dehydration and/or dehydroxylation.

Keywords: apatite, 19F MAS NMR, structural vacancies, isomorphism.


  1. Bаtsаnоv, S.S. (2000), Structural chemistry, ZAO Dialog-MGU, Moscow, RU, 294 p. [in Russian].
  2. Brik, A.B., Frank-Kamenetskaya, O.V., Dubok, V.A., Kalinichenko, E.A., Kuz’mina, M.A., Zorina, M.L., Dudchenko, N.O., Kalinichenko, A.M. and Bagmut, N.N. (2013), Mineral. Journ. (Ukraine), Vol. 35, No. 3, Kyiv, UA, pp. 3-10 [in Russian]. https://doi.org/10.15407/mineraljournal 
  3. Deer, W.A., Howie, R.A. and Zussman, J. (1966), Rock-Forming minerals, Vol. 5, Mir, Moscow, RU, 408 p. [in Russian].
  4. Kalinichenko, E.A., Brik, A.B., Ilchenko, E.A., Kalinichenko, A.M. and Kalinichenko, T.G. (2018), Mineral. Journ. (Ukraine), Vol. 40, No. 3, Kyiv, UA, pp. 65-84 [in Russian]. https://doi.org/10.15407/mineraljournal.40.03.065 
  5. Kalinichenko, E.A., Brik, A.B., Nikolaev, A.M., Kalinichenko, A.M., Frank-Kamenetskaya, O.V., Dubok, A.V., Bagmut, N.N., Kuz’mina, M.A. and Kolesnikov, I.E. (2016), Mineral. Journ. (Ukraine), Vol. 38, No. 2, Kyiv, UA, pp. 15-32 [in Russian]. https://doi.org/10.15407/mineraljournal.38.02.015 
  6. Knubovets, R.G. and Gabuda, S.P. (1975), Physics of apatite, Nauka, Novosibirsk, RU, pp. 100-112 [in Russian].
  7. Emsley, J.W., Finney, J. and Sutcliffe, L.H. (1969), High-Resolution NMR Spectroscopy, Vol. II, Mir, Moscow, RU, 496 p. [in Russian].
  8. Fleet, M.E. and Liu, X. (2008), Аmer. Mineral., Vol. 93, No. 8-9, pp. 1460-1469. https://doi.org/10.2138/am.2008.2786 
  9. Frank-Kamenetskaya, O., Kol’tsov, A., Kuz’mina, M., Zorina, M. and Poritskay, L. (2011), J. Mol. Struct., Vol. 992, pp. 9-18. https://doi.org/10.1016/j.molstruc.2011.02.013
  10. Mason, H.E., McCubbin, F.M., Smirnov, A. and Phillips, B.L. (2009), Amer. Mineral., Vol. 94, No. 4, pp. 507-516. https://doi.org/10.2138/am.2009.3095
  11. McArthur, J.M. (1990), Mineral. Mag., Vol. 54(376), pp. 508-510. https://doi.org/10.1180/minmag.1990.054.376.16 
  12. Moran, L.B., Berkowitz, J.K. and Yesinowski, J.P. (1992), Phys. Rev. B., Vol. 45, pp. 5347-5360. https://doi.org/10.1103/PhysRevB.45.5347
  13. Regnier, P., Lasaga, A.C., Berner, R.A., Han, O.H., Zilm, K.W. (1994), Amer. Mineral., Vol. 79, No. 9-10, pp. 809-818.
  14. Tonsuaadu, K., Gross, K.A., Pluduma, L. and Veiderma, M.A. (2011), J. Therm. Anal. Calorim., Vol. 110, Iss. 2, pp. 647-659. https://doi.org/10.1007/s10973-011-1877-y
  15. Vyalikh, A., Simon, P., Rosseeva, E., Buder, Ja., Scheler, U. and Kniep, R. (2015), Sci. Rep., Vol. 5, Article No. 15797, pp. 1-10. https://doi.org/10.1038/srep15797
  16. Yi, H., Balan, E., Gervais, C., Segalen, L., Fayon, F., Roche, D., Person, A., Morin, G., Guillaumet, M., Blanchard, M., Lazzeri, M. and Babonneau, F. (2013), Аmer. Mineral., Vol. 98, No. 5-6, pp. 1066-1069. https://doi.org/10.2138/am.2013.4445