The Structure Features of Synthetic Apatites with REE Impurities by Data of Spectroscopy and X-Ray Analysis Methods: I. Hydroxylapatites

UDC 548.32 : 549.753.1 : 546.650 : 543.429.23

E.А. Kalinichenko (1), А.B. Brik (1), А.М. Nikolaev (2), А.М. Kalinichenko (1), О.V. Frank-Kamenetskaya (2), О.V. Dubok (3), N.N. Bagmut (1), М.А. Kuz’mina (2), I.Е. Kolesnikov (2)

(1) M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine

34, Acad. Palladina Pr., Kyiv-142, Ukraine, 03680


(2) Federal State Budgetary Educational "Saint Petersburg State University"

137/9, Universitetskaya Emb., Saint Petersburg, Russia, 199034


(3) I.N. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine

3, Krzhizhanovsky Str., Kyiv-142, Ukraine, 03680


The Structure Features of Synthetic Apatites with REE Impurities by Data of Spectroscopy and X-Ray Analysis Methods: I. Hydroxylapatites

Language: Russian

Mineralogical journal 2015, 37 (4): 21-35

Abstract: The methods of X-ray analysis, infrared spectroscopy, nuclear magnetic resonance (NMR), electronic paramagnetic resonance, X-ray spectroscopy microprobe analysis and luminescence spectroscopy have been applied to investigate the synthesized hydroxylapatites (HA) doped by rare-earth elements (REE): Y, La, Ce, Pr, Nd, Eu, Gd, Dy, Ho and Er. Apatites have been synthesized by precipitation under conditions close to those at (Т, рН) of natural biological synthesis and initial ratios of elements (Ca, REE) : P = 2 : 1 and REE : Ca = 0.05. As established, REE 3+ ions substitute Ca2+ ions in all synthesized apatites with the ratio REE/(Ca + REE) = 5—8 at. %. Higher substitution degrees are observed for Pr, Dy, Er and Ho. Nd has been accommodated in Ca1 sites, other REE, mainly — in Са2 sites. All synthesized samples contain water molecules H2Ostr (less than 1 wt. %) fixed in structure in the REE neighboring. The intensity ratios of the two components in the 31Р MAS NMR spectra of Ce-, Pr-, Eu- and Gd-HA are assumed to represent the occupancies of the Ca1 and Ca2 sites by REE (φLn = Ln2/Ln1). The REE content in the Ca2 site decreases with the increase of REE atomic number: φLn ≈ 30 (Ce), 20 (Pr), 10 (Eu) and 6 (Gd). It is assumed that the H2Ostr molecule content can be used as a criterion of natural apatites formation at low temperatures and high water activity. It is shown that the experimental results, obtained by different methods, substantially complement each other and allow establishing more exactly the crystallochemical features of REEapatites.

Keywords: apatite, REE, isomorphism, nuclear magnetic resonance, infrared spectroscopy, X-ray diffraction analysis.


1. Abragam, A. (1961), The principles of nuclear magnetism, Clarendon Press, Oxford.
2. Brik, А.B., Frank-Kamenetskaya, О.V., Dubok, V.А., Kalinichenko, E.A., Kuz’mina, M.A., Zorina, M.L., Dudchenko, N.O., Kalinichenko, A.M. and Bagmut, N.N. (2013), Mineral. Journ. (Ukraine), Kyiv, Vol. 35 No 3, pp. 3-10.
3. Gilinskaja, L.G. (2001), Zhurnal strukturnoj himii, Novosibirsk, Russia, Vol. 42 No 3, pp. 446-453.
4. Gilinskaja, L.G. and Scherbakova, M.Ya. (1975), Apatite physics, Nauka, Novosibirsk, pp. 7-63.
5. Gunther, H. (1980), NMR Spectroscopy : An Introduction, Publ. by John & Sons, Chichester, New York, Brisbane, Toronto, 478 p.
6. Panova, Е.G., Ivanova, Т.I., Frank-Kamenetskaya, O.V., Bulakh, А.G. and Chukanov, N.V. (2001), Zapiski Vsesoyuznogo mineralogicheskogo obschestva, St. Petersburg, Russia, No 4, pp. 97-107.
7. Ponomarenko, О.М., Kryvdik, S.G. and Dubyna, О.V. (2012), Endogenous apatite-ilmenite deposits of the Ukrainian Shield (geochemistry, petrology and mineralogy), Noulidzh Press, Donetsk, Ukraine, 229 p.
8. Poplavko, Yu.М. (2007), The Principles of Physics of Magnetic Phenomena in Crystals, NTUU "KPI", Kyiv, Ukraine, 228 p.
9. Dubok, O., Shynkaruk, O. and Buzaneva, E. (2013), Funct. Materials, Kharkiv, Ukraine, Vol. 20 No 2, pp. 172-178.
10. Elliott, J.C. (1994), Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, Elsevier, Amsterdam - London - New York - Tokyo, 374 p.
11. Fleet, M.E. (2015), Carbonated hydroxyapatite. Materials, Synthesis and Application, CRC Press, Taylor & Francis Group, Boca Raton, 344 p.
12. Fleet, M.E., Liu, X. and Pan, Y. (2000), J. Solid State Chem., No 2, pp. 391-398. 
13. Frank-Kamenetskaya, O., Kol’tsov, A., Kuz’mina, M., Zorina, M. and Poritskay, L. (2011), J. Mol. Struct., Vol. 992, pp. 9-18.
14. Get’man, E.I., Loboda, S.N., Tkachenko, T.V., Ignatov, A.V. and Zabirko, T.F. (2005), Funct. Materials, Kharkiv, Ukraine, Vol. 12 No 1, pp. 6-10.
15. Iconaru, S.-L., Motelica-Heino, M. and Predoi, D. (2013), J. Spectroscopy, Vol. 1, 10 p., ID 284285.
16. Hughes, J.M., Cameron, M. and Mariano, A.N. (1991), Amer. Miner., Vol. 76, pp. 1165-1173.
17. Kaflak, A. and Kolodziejski, W. (2011), J. Mol. Struct., Vol. 990, pp. 262-270.
18. Kaygili, O., Dorozhkin, S.V. and Keser, S. (2014), Mater. Sci. Eng. C, Vol. 42 No 9, pp. 78-82.
19. Long, M., Hong, F., Li, W., Li, F., Zhao, H., Lv, Y., Li, H., Hu, F., Sun, L., Yan, C. and Wei, Z. (2008), J. Lumin., Vol. 128, pp. 428-436. 
20. Mason, H.E., Kozlowski, A. and Phillips, B.L. (2008), Chem. Mater., Vol. 20, pp. 294-302.
21. Monshi, A., Foroughi, M.R. and Monshi, M.R. (2012), World J. Nano Sci. and Eng., Vol. 2, pp. 154-160.
22. Pan, Y., Fleet, M.E., Chen, N., Well, J.A. and Nilges, M.J. (2002), Can. Miner., Vol. 40 No 4, pp. 1103-1112.
23. Shannon, R.D. (1976), Acta Crystallogr. A, Vol. 32, pp. 751-767.
24. Taitai, A. and Lacout, J.L. (1987), J. Phys. Chem. Solids, Vol. 48 No 7, pp. 593-685.
25. Zhang, S. (2013), Hydroxyapatite coatings for biomedical applications, CRC Press LLC, Boca Raton, Florida, USA.