Development of the Hydroxycarbonate Green Rust on the Steel Surface Contacting with Water Dispersion Medium in the Temperature Range from 3 to 70 °C

UDC (549.057+549.5) : 544.77

https://doi.org/10.15407/mineraljournal.37.01.022

O.M. Lavrynenko, Yu.S. Shchukin

F.D. Ovcharenko Institute of Bio-Colloid Chemistry of NAS of Ukraine

42, Acad. Vernadsky Ave., Kyiv-142, Ukraine, 03680 E-mail: alena-lavry@yandex.ru

Development of the Hydroxycarbonate Green Rust on the Steel Surface Contacting with Water Dispersion Medium in the Temperature Range from 3 to 70 °C

Language: English

Mineralogical journal 2015, 37 (1): 22-33

Abstract: The interest in the Fe(II)–Fe(III) layered double hydroxides (LDH) or Green Rust is closely connected with the studies of the global biogeochemical cycle of iron. Its formation takes place in numerous engineering systems and in permeable reactive barriers based on iron and steel. We studied the influence of pH value (in the range from 1.5 to 11.0) and temperature (in the range from 3 to 70 °C) on the development and phase transformation of the hydroxycarbonate Green Rust on the steel (St3) surface contacting with water dispersion medium under the rotation-corrosion dispergation conditions (RCD). X-ray diffraction in situ and SEM were used as the main methods for the mineral phase identification. The free access of oxygen into open-air system led to solid-state transformation of GR into plates of γ-FeOOH as well as its dissolution and precipitation in well-crystalline needle-like particles of γ-FeOOH. On the contrary, the appearance of Fe3O4 in the phase composition of the surface structures was explained by co-precipitation of the dissolved ferric and ferrous species. The maxi mum quantity of γ-FeOOH phase was fixed at 25 °C and at pH 1.5 within 72 h. Maximum quantity of Fe3O4 phase was fixed at 70 °C and at the pH 4.0—6.5 after 24 h of the phase formation process. The crystal lattice parameters of the GR(CO3 2–) formed on the steel surface within 5 h under the RCD conditions were the following: a = 0.318794, c = = 2.302260 nm (at T = 20 °C, pH 11.0) and a = 0.317084, c = 2.254410 nm (at Т = 35 °C, pH 6.0).

Keywords: Fe(II)–Fe(III) layered double hydroxides, hydroxycarbonate Green Rust, lepidocrocite, magnetite, steel surface, the rotation-corrosion dispergation conditions.

References:

1. Guignet, A. (1961), Rentgenografija kristallov, Fizmatgiz, Moskva, 604 p.

2. Lavrynenko, O.M. (2008), Nanosistemy, nanomaterialy, nanotehnologii, Kyiv, No 6, pp. 529-550.

3. Lavrynenko, O.M. (2013), Oderzhannya kompozitsіinikh strukturovanikh sistem na osnovі ferum-oksigenvmіsnikh mіneralіv, їkh struktura ta vlastivostі, Avtoref. dys. kand. himicheskih nauk, Kyiv, 40 p.

4. Lurie, Yu.Yu.( 1989), Spravochnik po analiticheskoj himii, Himija, Moskva, 448 p.

5. Prokopenko, V.A., Lavrynenko, O.M., Vashchenko, O.O. and Nadel, L.G. (2005), Еkotehnologii i resursosberezhenie, Kyiv, No 6, pp. 36-42.

6. Evans, Yu.R. (1962), Korrozija i okislenie metallov (Teoreticheskie osnovy i ih prakticheskoe primenenie), Mashgiz, Moskva, 856 p.

7. Yung, L. (1967), Anodnye oksidnye plenki, Energija, Leningrad, 232 p.

8. Allmann, R. (1968), Acta Crystallogr. B., Vol. 24, pp. 972-977.

9. Allmann, R. and Jepsen, H.P. (1969), Neues Jahrb. Mineral. Monatsh., Vol. 12, pp. 544-551.

10. Antony, H., Peulon, S., Legrand, L., and Chausse, A. (2004), Electrochim. Acta., Vol. 50, pp. 1015-1021.

11. Bernal, J.D., Dasgupta, D. R. and Mackay, A.L. (1959), Clay Miner. Bull., Vol. 4, pp. 15-30.

12. Bigham, J.M., Carlson, L., Murad, E., Winland, R.L. and Wolf, M. (1994), Miner. Mag., Vol. 58, pp. 641-648.

13. Duan, J., Wu, S., Zhang, X., Huangb, G., Duc, M. and Ho, B. (2008), Electrochim. Acta., Vol. 54 No 1, pp. 22-28.

14. Génin, J.-M.R. and Ruby, C. (2004), Solid State Sci., No 6, pp. 705-718.

15. Génin, J.-M.R., Ruby, C., Gеhin, A. and Refait, Ph. (2006), C.R. Geosci., No 338, pp. 433-446. https://doi.org/10.1016/j.crte.2006.04.004

16. Génin, J.-M.R., Ruby, C. (2008), Solid State Sci., No 10, pp. 244-259.

17. Hancen, H.C.B. (1989), Clay Miner., Vol. 24, pp. 663-669.

18. Jambor, J.L., Caudsepp, M. and Mountjoy, K. (2005), Can. Miner., No 43, pp. 2117-2140.

19. Lavrynenko, O.M., Korol, Ya.D., Netreba, S.V. and Prokopenko, V.A. (2010), Chemistry, Physics and Technology of Surface, Vol. 1 No 3, pp. 338-342.

20. Lavrynenko, O.M., Kovalchuk, V.I., Netreba, S.V. and Ulberg, Z.R. (2013), Nanostudies, No 7, pp. 295-322.

21. Lavrynenko, O.M., Netreba, S.V., Prokopenko, V.A. and Korol, Ya.D. (2011), Chemistry, Physics and Technology of Surface, Vol. 2 No 1, pp 93-100.

22. Legrand, L., Mazerolles, L. and Chausse, A. (2004), Geochim. et cosmochim. acta., Vol. 68 No 17, pp. 3497-3507. https://doi.org/10.1016/j.gca.2004.02.019

23. Legrand, L., Savoye, S., Chausse, A. and Messina, R. (2000), Electrochim. acta., No 46, pp. 111-117.

24. Lewis, D.G. (1997), Adv. Geoecol., Vol. 30, pp. 345-372.

25. Leygraf, C. and Graedel, T. (2000), Atmospheric Corrosion, Wiley Intersci., New York, 354 p.

26. O’Loughlin, Ed.J., Larese-Casanova, Ph., Scherer, M. and Cook, R. (2007), Geomicrobiol. J., Vol. 24 No 3-4, pp. 211-230.

27. Ona-Nguema, G., Carteret, C., Benali, O., Abdelmoula, M., Génin, J.-M.R. and Joranda, F. (2004), Geomicrobiol. J., No 21, pp. 79-90.

28. Peulon, S., Antony, H., Legrand, L. and Chaussé, A. (2004), Electrochim. Acta., No 49, pp. 2891-2899.

29. Peulon, S., Legrand, L., Antony H. and Chaussé, A. (2003), Electrochim. Commun., No 5, pp. 208-213.

30. Refait, P., Abdelmoula, M., and Génin, J.-M.R. (1998), Corros. Sci., No 40, pp. 1547-1560.

31. Srinivasan, R., Lin, R., Spicer, R.L. and cialisfrance24.com Davis, B.H. (1996), Coll. Surf. A: Physicochem. Eng. Asp., Vol. 113 Nо 1. pp. 97-105. https://doi.org/10.1016/0927-7757(96)03594-7

32. Sumoondur, A., Shaw, S., Ahmed, I. and Benning, L.G. (2008), Miner. Mag., Vol. 72 Nо 1, pp. 201-204.

33. Takahashi, Y., Matsubara, E., Suzuki, Sh., Okamoto, Y., Komatsu, T., Konishi, H., Mizuki, J. and Waseda, Y. (2005), Mater. Transactions., Vol. 46 Nо 3, pp. 637-642.

34. Tamura, H. (2008), Corros. Sci., No 50, pp. 1872-1883.

35. Tang, Z., Hong, S., Xiao, W. and Taylor, J. (2006), Corros. Sci., Vol. 48 No 2, pp. 322-342.

36. Trolard, F., Abdelmoula, M., Bourrie G., Humbert, B. and Genin, J.-M.R. (1996), Compt. Rend. Acad. Sci. Paris, Ser. IIA, No 323, pp. 1015-1022.

37. Vins, J., Zapletal, V. and Hanousek, F. (1987), Coll. Czech. Chem. Com., No 52, pp. 93-102.

38. Wolthoorn, A., Temminghoff, E.J.M. and van Riemsdijk, W.H. (2004), Appl. Geochem, No 19, pp. 1391-1402.

39. Zachara, J.M., Kukkadapu, R.K., Fredrickson, J.K., Gorby, Y.A. and Smith, S.C. (2002), Geomicrobiol. J., No 19, pp. 179-207.

English