UDC 548.32 : 549.753.1 : 546.650 : 543.429.23

E.А. Kalinichenko (1), А.B. Brik (1), А.М. Nikolaev (2), А.М. Kalinichenko (1), О.V. Frank-Kamenetskaya (2), A.V. Dubok (3), N.N. Bagmut (1), М.А. Kuz’mina (2), I.Е. Kolesnikov (2)

(1) M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine

34, Acad. Palladina Pr., Kyiv-142, Ukraine, 03680


(2) Federal State Budgetary Educational "Saint Petersburg State University"

7/9, University emb., Saint Petersburg, Russia, 199034


(3) I.M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine

3, Krzhizhanovsky Str., Kyiv-142, Ukraine, 03680



Language: Russian

Mineralogical journal 2016, 38 (2): 15-32

Abstract: The methods of X-ray analysis, infrared spectroscopy, nuclear magnetic resonance, electronic paramagnetic resonance and X-ray spectroscopy microprobe analysis have been used to investigate the synthesized fluorhydroxyapatites (FHA) with impurities of rare-earth elements (REE): Y, La, Ce, Pr, Nd, Eu, Gd, Dy, Ho and Er. Apatites had been synthesized by precipitation under conditions close to that at (Т, pH) of biological synthesis and initial ratios of elements (Ca, REE): P = 2 : 1, REE : Ca = 0.05, F : P = 0.5. The degree of Ca → REE substitution in Y- and Ce-FHA is found to be lower (about of 4 at. %) than the ratio REE : Ca in the solution at the synthesis, to be approximately equal to this ratio in Er-FHA and to be markedly higher of that (5—6.9 at. %) — in FHA with impurities of the other considered REE. Y, Ce, Ho and Er occupy Ca2 sites, the other REE — preferably, Ca2. F ions occupy about half of the structural sites in channels of Y-, La- and Ce-FHA. FHA channels doped with Y, La, Ce, Pr, Nd, Eu and Gd are characterized by the formation, predominantly, of small clusters of F ions and OH-groups, with impurity of Y, Ce, Pr, Dy, Ho and Er — a significant number of (ОН)n fragments. REE-substitutions in FHA followed by incorporation of water molecules H2Ostr, fixed in structure (0.07—0.81 apfu) and NH4+ ions (0.03—0.25 apfu). It is shown that the partial OH → F substitution leads to significant changes in REE incorporation in apatite. The content and distribution of H2Ostr molecules and fragments of OH···F, ОН···ОН and F – H2Оstr in structure are determined by the REE type and presumably reveal the conditions of low temperature and high water activity during REE-apatite formation. It is demonstrated that the studies performed by the complex techniques have allowed more accurately establish the number of crystallochemical features of REE-FHA.

Keywords: fluorhydroxyapatite, REE-substitutions, isomorphism, nuclear magnetic resonance, electron paramagnetic resonance, infrared spectroscopy.


  1. Abragam, A. (1961), The principles of nuclear magnetism, Clarendon Press, Oxford.
  2. Brik, А.B., Frank-Kamenetskaya, О.V., Dubok, V.А., Kalinichenko, E.A., Kuz’mina, M.A., Zorina, M.L., Dudchenko, N.O., Kalinichenko, A.M. and Bagmut, N.N. (2013), Mineral. Journ. (Ukraine), Kyiv, Vol. 35 No 3, pp. 3-10.
  3. Gilinskaja, L.G. (2001), Zhurnal strukturnoj himii, Novosibirsk, Vol. 42 No 3, RU, pp. 446-453.
  4. Gilinskaja, L.G. and Scherbakova, M.Ya. (1975), Apatite physics, Nauka, Novosibirsk, RU, pp. 7-63.
  5. Gunther, H. (1980), NMR Spectroscopy: An Introduction, Publ. by John & Sons, Chichester, New York, Brisbane, Toronto, 478 p.
  6. Kalinichenko, E.А., Brik, А.B., Nikolaev, А.М., Kalinichenko, А.М., Frank-Kamenetskaya, О.V., Dubok, O.V., Bagmut, N.N., Kuz’mina, М.А. and Kolesnikov, I.Е. (2015), Mineral. Journ. (Ukraine), Kyiv, Vol. 37 No 4, pp. 21-35.
  7. Knubovec, R.G. and Gabuda S.P. (1975), Apatite physics, Nauka, Novosibirsk, RU, pp. 100-112.
  8. Ponomarenko, О.М., Kryvdik, S.G. and Dubyna, О.V. (2012), Endogenous apatite-ilmenite deposits of the Ukrainian Shield (ageochemistry, petrology and mineralogy), Noulidzh Press, Donetsk, UA, 229 p.
  9. Dubok, O., Shynkaruk, O. and Buzaneva, E. (2013), Funct. Materials, Kharkiv, Ukraine, Vol. 20 No 2, pp. 172-178.
  10. Elliott, J.C. (1994), Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, Elsevier, Amsterdam - London - New York - Tokyo, 374 p.
  11. Fleet, M.E. and Pan, Y. (1995), Amer. Miner., Vol. 80 No 3-4, pp. 329-335.
  12. Frank-Kamenetskaya, O., Kol’tsov, A., Kuz’mina, M., Zorina, M. and Poritskay, L. (2011), J. Mol. Struct., Vol. 992, pp. 9-18.
  13. Freund, F. and Knobel, R.M. (1977), J. Chem. Soc., Dalton Transactions, No 11, pp. 1136-1140.
  14. Hughes, J.M., Cameron, M. and Mariano, A.N. (1991), Amer. Miner., Vol. 76, pp. 1165-1173.
  15. Jagannathan, R. and Kottaisamy, M. (1995), J. Physics: Condensed Matter., Vol. 7 No 44, pp. 8453-8466.
  16. Kaflak, A. and Kolodziejski, W. (2011), J. Mol. Struct., Vol. 990, pp. 262-270.
  17. Kolesov, B. (2006) Amer. Miner., Vol. 91 No 8-9, pp. 1355-1362.
  18. Mason, H.E., Kozlowski, A. and Phillips, B.L. (2008), Chem. Mater., Vol. 20, pp. 294-302.
  19. Pan, Y., Fleet, M.E., Chen, N., Well, J.A. and Nilges, M.J. (2002), Can. Miner., Vol. 40 No 4, pp. 1103-1112.
  20. Regnier, P., Lasaga, A.C., Berner, R.A., Han, O.H. and Zilm, K.W. (1994), Amer. Miner., Vol. 79 No 9-10, pp. 809-818.
  21. Rintoul, L., Wentrup-Byrne, E., Suzuki, S,. and Grondahl, L. (2007), J. Materials Sci.: Materials in Medicine, Vol. 18 No 9, pp. 1701-1710.
  22. Santos, R.V. and Clayton, R.N. (1995), Amer. Miner., Vol. 80 No 3-4, pp. 336-344.
  23. Shannon, R.D. (1976), Acta Crystal. A, Vol. 32, pp. 751-767.
  24. Taitai, A. and Lacout, J.L. (1987), J. Phys. Chem. Solids., Vol. 48 No 7, pp. 593-685.
  25. Tang, J. and Zhang, P. (2015), Lanthanide Single Molecule Magnets, Springer-Verlag Berlin Heidelberg.
  26. Volkov, A.G., Paula, S. and Deamer, D.W. (1997), Bioelectrochem. and Bioenergetics, Vol. 42, pp. 153-160.
  27. Vyalikh, A., Simon, P., Rosseeva, E., Buder, Ja., Scheler, U. and Kniep, R. (2015), Sci. Reports, Vol. 5, Article number 15797, pp. 1-10.